strace - trace system calls and signals
strace |
[-ACdffhiqqrtttTvVwxxyyzZ]
[-I n] [-b
execve] [-e expr]...
[-O overhead]
[-S sortby]
[-U columns]
[-a column]
[-o file]
[-s strsize]
[-X format]
[-P path]... [-p pid]...
[--seccomp-bpf] {
-p pid | [-DDD]
[-E var[=val]]... [-u
username] command [args] } |
strace |
-c [-dfwzZ]
[-I n] [-b
execve] [-e expr]...
[-O overhead]
[-S sortby]
[-U columns]
[-P path]... [-p pid]...
[--seccomp-bpf] {
-p pid | [-DDD]
[-E var[=val]]... [-u
username] command [args] } |
In the simplest case strace runs the specified
command until it exits. It intercepts and records the system calls
which are called by a process and the signals which are received by a
process. The name of each system call, its arguments and its return value
are printed on standard error or to the file specified with the -o
option.
strace is a useful diagnostic, instructional, and debugging
tool. System administrators, diagnosticians and trouble-shooters will find
it invaluable for solving problems with programs for which the source is not
readily available since they do not need to be recompiled in order to trace
them. Students, hackers and the overly-curious will find that a great deal
can be learned about a system and its system calls by tracing even ordinary
programs. And programmers will find that since system calls and signals are
events that happen at the user/kernel interface, a close examination of this
boundary is very useful for bug isolation, sanity checking and attempting to
capture race conditions.
Each line in the trace contains the system call name, followed by
its arguments in parentheses and its return value. An example from stracing
the command "cat /dev/null" is:
open("/dev/null", O_RDONLY) = 3
Errors (typically a return value of -1) have the errno symbol and
error string appended.
open("/foo/bar", O_RDONLY) = -1 ENOENT (No such file or directory)
Signals are printed as signal symbol and decoded siginfo
structure. An excerpt from stracing and interrupting the command "sleep
666" is:
sigsuspend([] <unfinished ...>
--- SIGINT {si_signo=SIGINT, si_code=SI_USER, si_pid=...} ---
+++ killed by SIGINT +++
If a system call is being executed and meanwhile another one is
being called from a different thread/process then strace will try to
preserve the order of those events and mark the ongoing call as being
unfinished. When the call returns it will be marked as
resumed.
[pid 28772] select(4, [3], NULL, NULL, NULL <unfinished ...>
[pid 28779] clock_gettime(CLOCK_REALTIME, {1130322148, 939977000}) = 0
[pid 28772] <... select resumed> ) = 1 (in [3])
Interruption of a (restartable) system call by a signal delivery
is processed differently as kernel terminates the system call and also
arranges its immediate reexecution after the signal handler completes.
read(0, 0x7ffff72cf5cf, 1) = ? ERESTARTSYS (To be restarted)
--- SIGALRM ... ---
rt_sigreturn(0xe) = 0
read(0, "", 1) = 0
Arguments are printed in symbolic form with passion. This example
shows the shell performing ">>xyzzy" output redirection:
open("xyzzy", O_WRONLY|O_APPEND|O_CREAT, 0666) = 3
Here, the second and the third argument of open(2) are
decoded by breaking down the flag argument into its three bitwise-OR
constituents and printing the mode value in octal by tradition. Where the
traditional or native usage differs from ANSI or POSIX, the latter forms are
preferred. In some cases, strace output is proven to be more readable
than the source.
Structure pointers are dereferenced and the members are displayed
as appropriate. In most cases, arguments are formatted in the most C-like
fashion possible. For example, the essence of the command "ls -l
/dev/null" is captured as:
lstat("/dev/null", {st_mode=S_IFCHR|0666, st_rdev=makedev(0x1, 0x3), ...}) = 0
Notice how the 'struct stat' argument is dereferenced and how each
member is displayed symbolically. In particular, observe how the
st_mode member is carefully decoded into a bitwise-OR of symbolic and
numeric values. Also notice in this example that the first argument to
lstat(2) is an input to the system call and the second argument is an
output. Since output arguments are not modified if the system call fails,
arguments may not always be dereferenced. For example, retrying the "ls
-l" example with a non-existent file produces the following line:
lstat("/foo/bar", 0xb004) = -1 ENOENT (No such file or directory)
In this case the porch light is on but nobody is home.
Syscalls unknown to strace are printed raw, with the
unknown system call number printed in hexadecimal form and prefixed with
"syscall_":
syscall_0xbad(0x1, 0x2, 0x3, 0x4, 0x5, 0x6) = -1 ENOSYS (Function not implemented)
Character pointers are dereferenced and printed as C strings.
Non-printing characters in strings are normally represented by ordinary C
escape codes. Only the first strsize (32 by default) bytes of strings
are printed; longer strings have an ellipsis appended following the closing
quote. Here is a line from "ls -l" where the getpwuid(3)
library routine is reading the password file:
read(3, "root::0:0:System Administrator:/"..., 1024) = 422
While structures are annotated using curly braces, simple pointers
and arrays are printed using square brackets with commas separating
elements. Here is an example from the command id(1) on a system with
supplementary group ids:
getgroups(32, [100, 0]) = 2
On the other hand, bit-sets are also shown using square brackets,
but set elements are separated only by a space. Here is the shell, preparing
to execute an external command:
sigprocmask(SIG_BLOCK, [CHLD TTOU], []) = 0
Here, the second argument is a bit-set of two signals,
SIGCHLD and SIGTTOU. In some cases, the bit-set is so full
that printing out the unset elements is more valuable. In that case, the
bit-set is prefixed by a tilde like this:
sigprocmask(SIG_UNBLOCK, ~[], NULL) = 0
Here, the second argument represents the full set of all
signals.
- -e expr
- A qualifying expression which modifies which events to trace or how to
trace them. The format of the expression is:
- [qualifier=][!]value[,value]...
- where qualifier is one of trace (or t), abbrev
(or a), verbose (or v), raw (or x),
signal (or signals or s), read (or
reads or r), write (or writes or w),
fault, inject, status, quiet (or silent
or silence or q), decode-fds (or decode-fd),
or kvm, and value is a qualifier-dependent symbol or number.
The default qualifier is trace. Using an exclamation mark negates
the set of values. For example, -e open means
literally -e trace=open which in turn means
trace only the open system call. By contrast,
-e trace=!open means to trace every system
call except open. In addition, the special values all and
none have the obvious meanings.
- Note that some shells use the exclamation point for history expansion even
inside quoted arguments. If so, you must escape the exclamation point with
a backslash.
- -E var=val
- --env=var=val
- Run command with var=val in its list of environment
variables.
- -E var
- --env=var
- Remove var from the inherited list of environment variables before
passing it on to the command.
- -p pid
- --attach=pid
- Attach to the process with the process ID pid and
begin tracing. The trace may be terminated at any time by a keyboard
interrupt signal (CTRL-C). strace will respond by detaching
itself from the traced process(es) leaving it (them) to continue running.
Multiple -p options can be used to attach to many processes in
addition to command (which is optional if at least one -p
option is given). -p "`pidof PROG`" syntax is
supported.
- -u username
- --user=username
- Run command with the user ID, group ID, and supplementary groups of
username. This option is only useful when running as root and
enables the correct execution of setuid and/or setgid binaries. Unless
this option is used setuid and setgid programs are executed without
effective privileges.
- -b syscall
- --detach-on=syscall
- If specified syscall is reached, detach from traced process. Currently,
only execve(2) syscall is supported. This option is useful if you
want to trace multi-threaded process and therefore require -f, but
don't want to trace its (potentially very complex) children.
- -D
- --daemonize
- --daemonize=grandchild
- Run tracer process as a grandchild, not as the parent of the tracee. This
reduces the visible effect of strace by keeping the tracee a direct
child of the calling process.
- -DD
- --daemonize=pgroup
- --daemonize=pgrp
- Run tracer process as tracee's grandchild in a separate process group. In
addition to reduction of the visible effect of strace, it also
avoids killing of strace with kill(2) issued to the whole
process group.
- -DDD
- --daemonize=session
- Run tracer process as tracee's grandchild in a separate session
("true daemonisation"). In addition to reduction of the visible
effect of strace, it also avoids killing of strace upon
session termination.
- -f
- --follow-forks
- Trace child processes as they are created by currently traced processes as
a result of the fork(2), vfork(2) and clone(2) system
calls. Note that -p PID -f will attach all threads of
process PID if it is multi-threaded, not only thread with
thread_id = PID.
- --output-separately
- If the --output=filename option is in effect, each
processes trace is written to filename.pid where pid
is the numeric process id of each process.
- -ff
- --follow-forks
--output-separately
- Combine the effects of --follow-forks and
--output-separately options. This is incompatible with -c,
since no per-process counts are kept.
- One might want to consider using strace-log-merge(1) to obtain a
combined strace log view.
- -I
interruptible
- --interruptible=interruptible
- When strace can be interrupted by signals (such as pressing
CTRL-C).
- 1, anywhere
- no signals are blocked;
- 2, waiting
- fatal signals are blocked while decoding syscall (default);
- 3, never
- fatal signals are always blocked (default if -o FILE
PROG);
- 4, never_tstp
- fatal signals and SIGTSTP (CTRL-Z) are always blocked
(useful to make strace -o FILE PROG not stop on
CTRL-Z, default if -D).
- -e trace=syscall_set
- --trace=syscall_set
- Trace only the specified set of system calls. syscall_set is
defined as [!]value[,value], and value
can be one of the following:
- syscall
- Trace specific syscall, specified by its name (but see NOTES).
- ?value
- Question mark before the syscall qualification allows suppression of error
in case no syscalls matched the qualification provided.
- /regex
- Trace only those system calls that match the regex. You can use
POSIX Extended Regular Expression syntax (see
regex(7)).
- syscall@64
- Trace syscall only for the 64-bit personality.
- syscall@32
- Trace syscall only for the 32-bit personality.
- syscall@x32
- Trace syscall only for the 32-on-64-bit personality.
- %file
- file
- Trace all system calls which take a file name as an argument. You can
think of this as an abbreviation for
-e trace=open,stat,chmod,unlink,...
which is useful to seeing what files the process is referencing.
Furthermore, using the abbreviation will ensure that you don't
accidentally forget to include a call like lstat(2) in the list.
Betchya woulda forgot that one. The syntax without a preceding percent
sign ("-e trace=file") is deprecated.
- %process
- process
- Trace system calls associated with process lifecycle (creation, exec,
termination). The syntax without a preceding percent sign ("-e
trace=process") is deprecated.
- %net
- %network
- network
- Trace all the network related system calls. The syntax without a preceding
percent sign ("-e trace=network") is
deprecated.
- %signal
- signal
- Trace all signal related system calls. The syntax without a preceding
percent sign ("-e trace=signal") is
deprecated.
- %ipc
- ipc
- Trace all IPC related system calls. The syntax without a preceding percent
sign ("-e trace=ipc") is deprecated.
- %desc
- desc
- Trace all file descriptor related system calls. The syntax without a
preceding percent sign ("-e trace=desc") is
deprecated.
- %memory
- memory
- Trace all memory mapping related system calls. The syntax without a
preceding percent sign ("-e trace=memory") is
deprecated.
- %creds
- Trace system calls that read or modify user and group identifiers or
capability sets.
- %stat
- Trace stat syscall variants.
- %lstat
- Trace lstat syscall variants.
- %fstat
- Trace fstat, fstatat, and statx syscall variants.
- %%stat
- Trace syscalls used for requesting file status (stat, lstat, fstat,
fstatat, statx, and their variants).
- %statfs
- Trace statfs, statfs64, statvfs, osf_statfs, and osf_statfs64 system
calls. The same effect can be achieved with
-e trace=/^(.*_)?statv?fs regular expression.
- %fstatfs
- Trace fstatfs, fstatfs64, fstatvfs, osf_fstatfs, and osf_fstatfs64 system
calls. The same effect can be achieved with
-e trace=/fstatv?fs regular expression.
- %%statfs
- Trace syscalls related to file system statistics (statfs-like,
fstatfs-like, and ustat). The same effect can be achieved with
-e trace=/statv?fs|fsstat|ustat regular
expression.
- %clock
- Trace system calls that read or modify system clocks.
- %pure
- Trace syscalls that always succeed and have no arguments. Currently, this
list includes arc_gettls(2), getdtablesize(2),
getegid(2), getegid32(2), geteuid(2),
geteuid32(2), getgid(2), getgid32(2),
getpagesize(2), getpgrp(2), getpid(2),
getppid(2), get_thread_area(2) (on architectures other than
x86), gettid(2), get_tls(2), getuid(2),
getuid32(2), getxgid(2), getxpid(2),
getxuid(2), kern_features(2), and metag_get_tls(2)
syscalls.
- The -c option is useful for determining which system calls might be
useful to trace. For example, trace=open,close,read,write
means to only trace those four system calls. Be careful when making
inferences about the user/kernel boundary if only a subset of system calls
are being monitored. The default is trace=all.
- -e signal=set
- --signal=set
- Trace only the specified subset of signals. The default is
signal=all. For example, signal=!SIGIO (or
signal=!io) causes SIGIO signals not to be
traced.
- -e status=set
- --status=set
- Print only system calls with the specified return status. The default is
status=all. When using the status qualifier, because
strace waits for system calls to return before deciding whether
they should be printed or not, the traditional order of events may not be
preserved anymore. If two system calls are executed by concurrent threads,
strace will first print both the entry and exit of the first system
call to exit, regardless of their respective entry time. The entry and
exit of the second system call to exit will be printed afterwards. Here is
an example when select(2) is called, but a different thread calls
clock_gettime(2) before select(2) finishes:
[pid 28779] 1130322148.939977 clock_gettime(CLOCK_REALTIME, {1130322148, 939977000}) = 0
[pid 28772] 1130322148.438139 select(4, [3], NULL, NULL, NULL) = 1 (in [3])
set can include the following elements:
- successful
- Trace system calls that returned without an error code. The -z
option has the effect of status=successful.
- failed
- Trace system calls that returned with an error code. The -Z option
has the effect of status=failed.
- unfinished
- Trace system calls that did not return. This might happen, for example,
due to an execve call in a neighbour thread.
- unavailable
- Trace system calls that returned but strace failed to fetch the error
status.
- detached
- Trace system calls for which strace detached before the return.
- -P path
- --trace-path=path
- Trace only system calls accessing path. Multiple -P options
can be used to specify several paths.
- -z
- --successful-only
- Print only syscalls that returned without an error code.
- -Z
- --failed-only
- Print only syscalls that returned with an error code.
- -a column
- --columns=column
- Align return values in a specific column (default column 40).
- -e abbrev=syscall_set
- --abbrev=syscall_set
- Abbreviate the output from printing each member of large structures. The
syntax of the syscall_set specification is the same as in the -e
trace option. The default is abbrev=all. The -v
option has the effect of abbrev=none.
- -e verbose=syscall_set
- --verbose=syscall_set
- Dereference structures for the specified set of system calls. The syntax
of the syscall_set specification is the same as in the -e
trace option. The default is verbose=all.
- -e raw=syscall_set
- --raw=syscall_set
- Print raw, undecoded arguments for the specified set of system calls. The
syntax of the syscall_set specification is the same as in the -e
trace option. This option has the effect of causing all arguments to
be printed in hexadecimal. This is mostly useful if you don't trust the
decoding or you need to know the actual numeric value of an argument. See
also -X raw option.
- -e read=set
- --read=set
- Perform a full hexadecimal and ASCII dump of all the data read from file
descriptors listed in the specified set. For example, to see all input
activity on file descriptors 3 and 5 use
-e read=3,5. Note that this is independent
from the normal tracing of the read(2) system call which is
controlled by the option -e trace=read.
- -e write=set
- --write=set
- Perform a full hexadecimal and ASCII dump of all the data written to file
descriptors listed in the specified set. For example, to see all output
activity on file descriptors 3 and 5 use
-e write=3,5. Note that this is independent
from the normal tracing of the write(2) system call which is
controlled by the option -e trace=write.
- -e quiet=set
- --quiet=set
- --silent=set
- --silence=set
- Suppress various information messages. The default is
quiet=none. set can include the following
elements:
- attach
- Suppress messages about attaching and detaching ("[ Process NNNN
attached ]", "[ Process NNNN detached ]").
- exit
- Suppress messages about process exits ("+++ exited with SSS
+++").
- path-resolution
- Suppress messages about resolution of paths provided via the -P
option ("Requested path "..." resolved into
"..."").
- personality
- Suppress messages about process personality changes ("[ Process
PID=NNNN runs in PPP mode. ]").
- thread-execve
- superseded
- Suppress messages about process being superseded by execve(2) in
another thread ("+++ superseded by execve in pid NNNN
+++").
- -e decode-fds=set
- --decode-fds=set
- Decode various information associated with file descriptors. The default
is decode-fds=none. set can include the following
elements:
- path
- Print file paths.
- socket
- Print socket protocol-specific information,
- dev
- Print character/block device numbers.
- pidfd
- Print PIDs associated with pidfd file descriptors.
- -e kvm=vcpu
- --kvm=vcpu
- Print the exit reason of kvm vcpu. Requires Linux kernel version 4.16.0 or
higher.
- -i
- --instruction-pointer
- Print the instruction pointer at the time of the system call.
- -n
- --syscall-number
- Print the syscall number.
- -o filename
- --output=filename
- Write the trace output to the file filename rather than to stderr.
filename.pid form is used if -ff option is supplied.
If the argument begins with '|' or '!', the rest of the argument is
treated as a command and all output is piped to it. This is convenient for
piping the debugging output to a program without affecting the
redirections of executed programs. The latter is not compatible with
-ff option currently.
- -A
- --output-append-mode
- Open the file provided in the -o option in append mode.
- -q
- --quiet
- --quiet=attach,personality
- Suppress messages about attaching, detaching, and personality changes.
This happens automatically when output is redirected to a file and the
command is run directly instead of attaching.
- -qq
- --quiet=attach,personality,exit
- Suppress messages attaching, detaching, personality changes, and about
process exit status.
- -qqq
- --quiet=all
- Suppress all suppressible messages (please refer to the -e quiet
option description for the full list of suppressible messages).
- -r
- --relative-timestamps[=precision]
- Print a relative timestamp upon entry to each system call. This records
the time difference between the beginning of successive system calls.
precision can be one of s (for seconds), ms
(milliseconds), us (microseconds), or ns (nanoseconds), and
allows setting the precision of time value being printed. Default is
us (microseconds). Note that since -r option uses the
monotonic clock time for measuring time difference and not the wall clock
time, its measurements can differ from the difference in time reported by
the -t option.
- -s strsize
- --string-limit=strsize
- Specify the maximum string size to print (the default is 32). Note that
filenames are not considered strings and are always printed in full.
- --absolute-timestamps[=[[format:]format],[[precision:]precision]]
- --timestamps[=[[format:]format],[[precision:]precision]]
- Prefix each line of the trace with the wall clock time in the specified
format with the specified precision. format can be
one of the following:
- none
- No time stamp is printed. Can be used to override the previous
setting.
- time
- Wall clock time (strftime(3) format string is %T).
- unix
- Number of seconds since the epoch (strftime(3) format string is
%s).
- precision can be one of s (for seconds), ms
(milliseconds), us (microseconds), or ns (nanoseconds).
Default arguments for the option are
format:time,precision:s.
- -t
- --absolute-timestamps
- Prefix each line of the trace with the wall clock time.
- -tt
- --absolute-timestamps=precision:us
- If given twice, the time printed will include the microseconds.
- -ttt
- --absolute-timestamps=format:unix,precision:us
- If given thrice, the time printed will include the microseconds and the
leading portion will be printed as the number of seconds since the
epoch.
- -T
- --syscall-times[=precision]
- Show the time spent in system calls. This records the time difference
between the beginning and the end of each system call. precision
can be one of s (for seconds), ms (milliseconds), us
(microseconds), or ns (nanoseconds), and allows setting the
precision of time value being printed. Default is us
(microseconds).
- -v
- --no-abbrev
- Print unabbreviated versions of environment, stat, termios, etc. calls.
These structures are very common in calls and so the default behavior
displays a reasonable subset of structure members. Use this option to get
all of the gory details.
- -x
- --strings-in-hex=non-ascii
- Print all non-ASCII strings in hexadecimal string format.
- -xx
- --strings-in-hex
- --strings-in-hex=all
- Print all strings in hexadecimal string format.
- -X format
- --const-print-style=format
- Set the format for printing of named constants and flags. Supported
format values are:
- raw
- Raw number output, without decoding.
- abbrev
- Output a named constant or a set of flags instead of the raw number if
they are found. This is the default strace behaviour.
- verbose
- Output both the raw value and the decoded string (as a comment).
- -y
- --decode-fds
- --decode-fds=path
- Print paths associated with file descriptor arguments.
- -yy
- --decode-fds=all
- Print all available information associated with file descriptors:
protocol-specific information associated with socket file descriptors,
block/character device number associated with device file descriptors, and
PIDs associated with pidfd file descriptors.
- --pidns-translation
- If strace and tracee are in different PID namespaces, print PIDs in
strace's namespace, too.
- -c
- --summary-only
- Count time, calls, and errors for each system call and report a summary on
program exit, suppressing the regular output. This attempts to show system
time (CPU time spent running in the kernel) independent of wall clock
time. If -c is used with -f, only aggregate totals for all
traced processes are kept.
- -C
- --summary
- Like -c but also print regular output while processes are
running.
- -O overhead
- --summary-syscall-overhead =overhead
- Set the overhead for tracing system calls to overhead. This is
useful for overriding the default heuristic for guessing how much time is
spent in mere measuring when timing system calls using the -c
option. The accuracy of the heuristic can be gauged by timing a given
program run without tracing (using time(1)) and comparing the
accumulated system call time to the total produced using -c.
- The format of overhead specification is described in section
Time specification format description.
- -S sortby
- --summary-sort-by=sortby
- Sort the output of the histogram printed by the -c option by the
specified criterion. Legal values are time (or time-percent
or time-total or total-time), min-time (or
shortest or time-min), max-time (or longest or
time-max), avg-time (or time-avg), calls (or
count), errors (or error), name (or
syscall or syscall-name), and nothing (or
none); default is time.
- -U columns
- --summary-columns=columns
- Configure a set (and order) of columns being shown in the call summary.
The columns argument is a comma-separated list with items being one
of the following:
- The default value is
time-percent,total-time,avg-time,calls,errors,name.
If the name field is not supplied explicitly, it is added as the
last column.
- -w
- --summary-wall-clock
- Summarise the time difference between the beginning and end of each system
call. The default is to summarise the system time.
- -e inject=syscall_set[:error=errno|:retval=value][:signal=sig][:syscall=syscall][:delay_enter=delay][:delay_exit=delay][:when=expr]
- --inject=syscall_set[:error=errno|:retval=value][:signal=sig][:syscall=syscall][:delay_enter=delay][:delay_exit=delay][:when=expr]
- Perform syscall tampering for the specified set of syscalls. The syntax of
the syscall_set specification is the same as in the -e trace
option.
- At least one of error, retval, signal,
delay_enter, or delay_exit options has to be specified.
error and retval are mutually exclusive.
- If :error=errno option is specified, a fault is injected
into a syscall invocation: the syscall number is replaced by -1 which
corresponds to an invalid syscall (unless a syscall is specified with
:syscall= option), and the error code is specified using a symbolic
errno value like ENOSYS or a numeric value within 1..4095
range.
- If :retval=value option is specified, success injection is
performed: the syscall number is replaced by -1, but a bogus success value
is returned to the callee.
- If :signal=sig option is specified with either a symbolic
value like SIGSEGV or a numeric value within 1..SIGRTMAX
range, that signal is delivered on entering every syscall specified by the
set.
- If :delay_enter=delay or :delay_exit=delay
options are specified, delay injection is performed: the tracee is delayed
by time period specified by delay on entering or exiting the
syscall, respectively. The format of delay specification is
described in section Time specification format description.
- If :signal=sig option is specified without
:error=errno, :retval=value or
:delay_{enter,exit}=usecs options, then only a signal
sig is delivered without a syscall fault or delay injection.
Conversely, :error=errno or :retval=value
option without :delay_enter=delay,
:delay_exit=delay or :signal=sig options
injects a fault without delivering a signal or injecting a delay,
etc.
- If both :error=errno or :retval=value and
:signal=sig options are specified, then both a fault or
success is injected and a signal is delivered.
- if :syscall=syscall option is specified, the corresponding
syscall with no side effects is injected instead of -1. Currently, only
"pure" (see -e trace=%pure description) syscalls
can be specified there.
- Unless a :when=expr subexpression is specified, an injection
is being made into every invocation of each syscall from the
set.
- The format of the subexpression is:
- Number first stands for the first invocation number in the range,
number last stands for the last invocation number in the range, and
step stands for the step between two consecutive invocations. The
following combinations are useful:
- first
- For every syscall from the set, perform an injection for the
syscall invocation number first only.
- first..last
- For every syscall from the set, perform an injection for the
syscall invocation number first and all subsequent invocations
until the invocation number last (inclusive).
- first+
- For every syscall from the set, perform injections for the syscall
invocation number first and all subsequent invocations.
- first..last+
- For every syscall from the set, perform injections for the syscall
invocation number first and all subsequent invocations until the
invocation number last (inclusive).
- first+step
- For every syscall from the set, perform injections for syscall
invocations number first, first+step,
first+step+step, and so on.
- first..last+step
- Same as the previous, but consider only syscall invocations with numbers
up to last (inclusive).
- For example, to fail each third and subsequent chdir syscalls with
ENOENT, use
-e inject=chdir:error=ENOENT:when=3+.
- The valid range for numbers first and step is 1..65535, and
for number last is 1..65534.
- An injection expression can contain only one error= or
retval= specification, and only one signal= specification.
If an injection expression contains multiple when= specifications,
the last one takes precedence.
- Accounting of syscalls that are subject to injection is done per syscall
and per tracee.
- Specification of syscall injection can be combined with other syscall
filtering options, for example, -P /dev/urandom -e
inject=file:error=ENOENT.
- -e fault=syscall_set[:error=errno][:when=expr]
- --fault=syscall_set[:error=errno][:when=expr]
- Perform syscall fault injection for the specified set of syscalls.
- This is equivalent to more generic -e inject= expression
with default value of errno option set to ENOSYS.
- -d
- --debug
- Show some debugging output of strace itself on the standard
error.
- -F
- This option is deprecated. It is retained for backward compatibility only
and may be removed in future releases. Usage of multiple instances of
-F option is still equivalent to a single -f, and it is
ignored at all if used along with one or more instances of -f
option.
- -h
- --help
- Print the help summary.
- --seccomp-bpf
- Try to enable use of seccomp-bpf (see seccomp(2)) to have
ptrace(2)-stops only when system calls that are being traced occur
in the traced processes. This option has no effect unless
-f/--follow-forks is also specified. --seccomp-bpf is
also not applicable to processes attached using -p/--attach
option. An attempt to enable system calls filtering using seccomp-bpf may
fail for various reasons, e.g. there are too many system calls to filter,
the seccomp API is not available, or strace itself is being traced.
In cases when seccomp-bpf filter setup failed, strace proceeds as
usual and stops traced processes on every system call.
- -V
- --version
- Print the version number of strace.
Time values can be specified as a decimal floating point number
(in a format accepted by strtod(3)), optionally followed by one of
the following suffices that specify the unit of time: s (seconds),
ms (milliseconds), us (microseconds), or ns
(nanoseconds). If no suffix is specified, the value is interpreted as
microseconds.
The described format is used for -O, -e
inject=delay_enter, and -e inject=delay_exit
options.
When command exits, strace exits with the same exit
status. If command is terminated by a signal, strace
terminates itself with the same signal, so that strace can be used as
a wrapper process transparent to the invoking parent process. Note that
parent-child relationship (signal stop notifications, getppid(2)
value, etc) between traced process and its parent are not preserved unless
-D is used.
When using -p without a command, the exit status of
strace is zero unless no processes has been attached or there was an
unexpected error in doing the tracing.
If strace is installed setuid to root then the invoking
user will be able to attach to and trace processes owned by any user. In
addition setuid and setgid programs will be executed and traced with the
correct effective privileges. Since only users trusted with full root
privileges should be allowed to do these things, it only makes sense to
install strace as setuid to root when the users who can execute it
are restricted to those users who have this trust. For example, it makes
sense to install a special version of strace with mode 'rwsr-xr--',
user root and group trace, where members of the trace
group are trusted users. If you do use this feature, please remember to
install a regular non-setuid version of strace for ordinary users to
use.
On some architectures, strace supports decoding of syscalls
for processes that use different ABI rather than the one strace uses.
Specifically, in addition to decoding native ABI, strace can decode
the following ABIs on the following architectures:
Architecture |
ABIs supported |
x86_64 |
i386, x32 [1]; i386 [2] |
AArch64 |
ARM 32-bit EABI |
PowerPC 64-bit [3] |
PowerPC 32-bit |
s390x |
s390 |
SPARC 64-bit |
SPARC 32-bit |
TILE 64-bit |
TILE 32-bit |
- [1]
- When strace is built as an x86_64 application
- [2]
- When strace is built as an x32 application
- [3]
- Big endian only
This support is optional and relies on ability to generate and
parse structure definitions during the build time. Please refer to the
output of the strace -V command in order to figure out what support
is available in your strace build ("non-native" refers to
an ABI that differs from the ABI strace has):
- m32-mpers
- strace can trace and properly decode non-native 32-bit
binaries.
- no-m32-mpers
- strace can trace, but cannot properly decode non-native 32-bit
binaries.
- mx32-mpers
- strace can trace and properly decode non-native 32-on-64-bit
binaries.
- no-mx32-mpers
- strace can trace, but cannot properly decode non-native
32-on-64-bit binaries.
If the output contains neither m32-mpers nor
no-m32-mpers, then decoding of non-native 32-bit binaries is not
implemented at all or not applicable.
Likewise, if the output contains neither mx32-mpers nor
no-mx32-mpers, then decoding of non-native 32-on-64-bit binaries is
not implemented at all or not applicable.
It is a pity that so much tracing clutter is produced by systems
employing shared libraries.
It is instructive to think about system call inputs and outputs as
data-flow across the user/kernel boundary. Because user-space and
kernel-space are separate and address-protected, it is sometimes possible to
make deductive inferences about process behavior using inputs and outputs as
propositions.
In some cases, a system call will differ from the documented
behavior or have a different name. For example, the faccessat(2)
system call does not have flags argument, and the setrlimit(2)
library function uses prlimit64(2) system call on modern (2.6.38+)
kernels. These discrepancies are normal but idiosyncratic characteristics of
the system call interface and are accounted for by C library wrapper
functions.
Some system calls have different names in different architectures
and personalities. In these cases, system call filtering and printing uses
the names that match corresponding __NR_* kernel macros of the
tracee's architecture and personality. There are two exceptions from this
general rule: arm_fadvise64_64(2) ARM syscall and
xtensa_fadvise64_64(2) Xtensa syscall are filtered and printed as
fadvise64_64(2).
On x32, syscalls that are intended to be used by 64-bit processes
and not x32 ones (for example, readv(2), that has syscall number 19
on x86_64, with its x32 counterpart has syscall number 515), but called with
__X32_SYSCALL_BIT flag being set, are designated with #64
suffix.
On some platforms a process that is attached to with the -p
option may observe a spurious EINTR return from the current system
call that is not restartable. (Ideally, all system calls should be restarted
on strace attach, making the attach invisible to the traced process,
but a few system calls aren't. Arguably, every instance of such behavior is
a kernel bug.) This may have an unpredictable effect on the process if the
process takes no action to restart the system call.
As strace executes the specified command directly
and does not employ a shell for that, scripts without shebang that usually
run just fine when invoked by shell fail to execute with ENOEXEC
error. It is advisable to manually supply a shell as a command with
the script as its argument.
Programs that use the setuid bit do not have effective user
ID privileges while being traced.
A traced process runs slowly (but check out the
--seccomp-bpf option).
Traced processes which are descended from command may be
left running after an interrupt signal (CTRL-C).
The original strace was written by Paul Kranenburg for
SunOS and was inspired by its trace utility. The SunOS version of
strace was ported to Linux and enhanced by Branko Lankester, who also
wrote the Linux kernel support. Even though Paul released strace 2.5
in 1992, Branko's work was based on Paul's strace 1.5 release from
1991. In 1993, Rick Sladkey merged strace 2.5 for SunOS and the
second release of strace for Linux, added many of the features of
truss(1) from SVR4, and produced an strace that worked on both
platforms. In 1994 Rick ported strace to SVR4 and Solaris and wrote
the automatic configuration support. In 1995 he ported strace to Irix
and tired of writing about himself in the third person.
Beginning with 1996, strace was maintained by Wichert
Akkerman. During his tenure, strace development migrated to CVS;
ports to FreeBSD and many architectures on Linux (including ARM, IA-64,
MIPS, PA-RISC, PowerPC, s390, SPARC) were introduced. In 2002, the burden of
strace maintainership was transferred to Roland McGrath. Since then,
strace gained support for several new Linux architectures (AMD64,
s390x, SuperH), bi-architecture support for some of them, and received
numerous additions and improvements in syscalls decoders on Linux;
strace development migrated to git during that period. Since
2009, strace is actively maintained by Dmitry Levin. strace
gained support for AArch64, ARC, AVR32, Blackfin, Meta, Nios II, OpenRISC
1000, RISC-V, Tile/TileGx, Xtensa architectures since that time. In 2012,
unmaintained and apparently broken support for non-Linux operating systems
was removed. Also, in 2012 strace gained support for path tracing and
file descriptor path decoding. In 2014, support for stack traces printing
was added. In 2016, syscall fault injection was implemented.
For the additional information, please refer to the NEWS
file and strace repository commit log.
The complete list of strace contributors can be found in
the CREDITS file.