All options are configured in the [Manager] section:
LogColor=, LogLevel=, LogLocation=,
LogTarget=, LogTime=, DumpCore=yes,
CrashChangeVT=no, CrashShell=no, CrashReboot=no,
ShowStatus=yes, DefaultStandardOutput=journal,
DefaultStandardError=inherit
Configures various parameters of basic manager operation.
These options may be overridden by the respective process and kernel command
line arguments. See
systemd(1) for details.
CtrlAltDelBurstAction=
Defines what action will be performed if user presses
Ctrl-Alt-Delete more than 7 times in 2s. Can be set to
"reboot-force", "poweroff-force",
"reboot-immediate", "poweroff-immediate" or disabled with
"none". Defaults to "reboot-force".
CPUAffinity=
Configures the CPU affinity for the service manager as
well as the default CPU affinity for all forked off processes. Takes a list of
CPU indices or ranges separated by either whitespace or commas. CPU ranges are
specified by the lower and upper CPU indices separated by a dash. This option
may be specified more than once, in which case the specified CPU affinity
masks are merged. If the empty string is assigned, the mask is reset, all
assignments prior to this will have no effect. Individual services may
override the CPU affinity for their processes with the
CPUAffinity=
setting in unit files, see
systemd.exec(5).
NUMAPolicy=
Configures the NUMA memory policy for the service manager
and the default NUMA memory policy for all forked off processes. Individual
services may override the default policy with the
NUMAPolicy= setting
in unit files, see
systemd.exec(5).
NUMAMask=
Configures the NUMA node mask that will be associated
with the selected NUMA policy. Note that
default and
local NUMA
policies don't require explicit NUMA node mask and value of the option can be
empty. Similarly to
NUMAPolicy=, value can be overridden by individual
services in unit files, see
systemd.exec(5).
RuntimeWatchdogSec=, RebootWatchdogSec=,
KExecWatchdogSec=
Configure the hardware watchdog at runtime and at reboot.
Takes a timeout value in seconds (or in other time units if suffixed with
"ms", "min", "h", "d", "w").
If
RuntimeWatchdogSec= is set to a non-zero value, the watchdog
hardware (/dev/watchdog or the path specified with
WatchdogDevice= or
the kernel option
systemd.watchdog-device=) will be programmed to
automatically reboot the system if it is not contacted within the specified
timeout interval. The system manager will ensure to contact it at least once
in half the specified timeout interval. This feature requires a hardware
watchdog device to be present, as it is commonly the case in embedded and
server systems. Not all hardware watchdogs allow configuration of all possible
reboot timeout values, in which case the closest available timeout is picked.
RebootWatchdogSec= may be used to configure the hardware watchdog when
the system is asked to reboot. It works as a safety net to ensure that the
reboot takes place even if a clean reboot attempt times out. Note that the
RebootWatchdogSec= timeout applies only to the second phase of the
reboot, i.e. after all regular services are already terminated, and after the
system and service manager process (PID 1) got replaced by the
systemd-shutdown binary, see system
bootup(7) for details. During the
first phase of the shutdown operation the system and service manager remains
running and hence
RuntimeWatchdogSec= is still honoured. In order to
define a timeout on this first phase of system shutdown, configure
JobTimeoutSec= and
JobTimeoutAction= in the [Unit] section of
the shutdown.target unit. By default
RuntimeWatchdogSec= defaults to 0
(off), and
RebootWatchdogSec= to 10min.
KExecWatchdogSec= may be
used to additionally enable the watchdog when kexec is being executed rather
than when rebooting. Note that if the kernel does not reset the watchdog on
kexec (depending on the specific hardware and/or driver), in this case the
watchdog might not get disabled after kexec succeeds and thus the system might
get rebooted, unless
RuntimeWatchdogSec= is also enabled at the same
time. For this reason it is recommended to enable
KExecWatchdogSec=
only if
RuntimeWatchdogSec= is also enabled. These settings have no
effect if a hardware watchdog is not available.
WatchdogDevice=
Configure the hardware watchdog device that the runtime
and shutdown watchdog timers will open and use. Defaults to /dev/watchdog.
This setting has no effect if a hardware watchdog is not available.
CapabilityBoundingSet=
Controls which capabilities to include in the capability
bounding set for PID 1 and its children. See
capabilities(7) for
details. Takes a whitespace-separated list of capability names as read by
cap_from_name(3). Capabilities listed will be included in the bounding
set, all others are removed. If the list of capabilities is prefixed with ~,
all but the listed capabilities will be included, the effect of the assignment
inverted. Note that this option also affects the respective capabilities in
the effective, permitted and inheritable capability sets. The capability
bounding set may also be individually configured for units using the
CapabilityBoundingSet= directive for units, but note that capabilities
dropped for PID 1 cannot be regained in individual units, they are lost for
good.
NoNewPrivileges=
Takes a boolean argument. If true, ensures that PID 1 and
all its children can never gain new privileges through
execve(2) (e.g.
via setuid or setgid bits, or filesystem capabilities). Defaults to false.
General purpose distributions commonly rely on executables with setuid or
setgid bits and will thus not function properly with this option enabled.
Individual units cannot disable this option. Also see
No New Privileges
Flag[1].
SystemCallArchitectures=
Takes a space-separated list of architecture identifiers.
Selects from which architectures system calls may be invoked on this system.
This may be used as an effective way to disable invocation of non-native
binaries system-wide, for example to prohibit execution of 32-bit x86 binaries
on 64-bit x86-64 systems. This option operates system-wide, and acts similar
to the
SystemCallArchitectures= setting of unit files, see
systemd.exec(5) for details. This setting defaults to the empty list,
in which case no filtering of system calls based on architecture is applied.
Known architecture identifiers are "x86", "x86-64",
"x32", "arm" and the special identifier
"native". The latter implicitly maps to the native architecture of
the system (or more specifically, the architecture the system manager was
compiled for). Set this setting to "native" to prohibit execution of
any non-native binaries. When a binary executes a system call of an
architecture that is not listed in this setting, it will be immediately
terminated with the SIGSYS signal.
TimerSlackNSec=
Sets the timer slack in nanoseconds for PID 1, which is
inherited by all executed processes, unless overridden individually, for
example with the
TimerSlackNSec= setting in service units (for details
see
systemd.exec(5)). The timer slack controls the accuracy of wake-ups
triggered by system timers. See
prctl(2) for more information. Note
that in contrast to most other time span definitions this parameter takes an
integer value in nano-seconds if no unit is specified. The usual time units
are understood too.
StatusUnitFormat=
Takes either
name or
description as the
value. If
name, the system manager will use unit names in status
messages, instead of the longer and more informative descriptions set with
Description=, see
systemd.unit(5).
DefaultTimerAccuracySec=
Sets the default accuracy of timer units. This controls
the global default for the
AccuracySec= setting of timer units, see
systemd.timer(5) for details.
AccuracySec= set in individual
units override the global default for the specific unit. Defaults to 1min.
Note that the accuracy of timer units is also affected by the configured timer
slack for PID 1, see
TimerSlackNSec= above.
DefaultTimeoutStartSec=, DefaultTimeoutStopSec=,
DefaultTimeoutAbortSec=, DefaultRestartSec=
Configures the default timeouts for starting, stopping
and aborting of units, as well as the default time to sleep between automatic
restarts of units, as configured per-unit in
TimeoutStartSec=,
TimeoutStopSec=,
TimeoutAbortSec= and
RestartSec= (for
services, see
systemd.service(5) for details on the per-unit settings).
Disabled by default, when service with
Type=oneshot is used. For
non-service units,
DefaultTimeoutStartSec= sets the default
TimeoutSec= value.
DefaultTimeoutStartSec= and
DefaultTimeoutStopSec= default to 90s.
DefaultTimeoutAbortSec=
is not set by default so that all units fall back to
TimeoutStopSec=.
DefaultRestartSec= defaults to 100ms.
DefaultStartLimitIntervalSec=,
DefaultStartLimitBurst=
Configure the default unit start rate limiting, as
configured per-service by
StartLimitIntervalSec= and
StartLimitBurst=. See
systemd.service(5) for details on the
per-service settings.
DefaultStartLimitIntervalSec= defaults to 10s.
DefaultStartLimitBurst= defaults to 5.
DefaultEnvironment=
Sets manager environment variables passed to all executed
processes. Takes a space-separated list of variable assignments. See
environ(7) for details about environment variables.
Example:
DefaultEnvironment="VAR1=word1 word2" VAR2=word3 "VAR3=word 5 6"
Sets three variables "VAR1", "VAR2",
"VAR3".
DefaultCPUAccounting=, DefaultBlockIOAccounting=,
DefaultMemoryAccounting=, DefaultTasksAccounting=,
DefaultIOAccounting=, DefaultIPAccounting=
Configure the default resource accounting settings, as
configured per-unit by
CPUAccounting=,
BlockIOAccounting=,
MemoryAccounting=,
TasksAccounting=,
IOAccounting= and
IPAccounting=. See
systemd.resource-control(5) for details on
the per-unit settings.
DefaultTasksAccounting= defaults to yes,
DefaultMemoryAccounting= to yes.
DefaultCPUAccounting= defaults
to yes if enabling CPU accounting doesn't require the CPU controller to be
enabled (Linux 4.15+ using the unified hierarchy for resource control),
otherwise it defaults to no. The other three settings default to no.
DefaultTasksMax=
Configure the default value for the per-unit
TasksMax= setting. See
systemd.resource-control(5) for details.
This setting applies to all unit types that support resource control settings,
with the exception of slice units. Defaults to 15% of the minimum of
kernel.pid_max=,
kernel.threads-max= and root cgroup
pids.max. Kernel has a default value for
kernel.pid_max= and an
algorithm of counting in case of more than 32 cores. For example with the
default
kernel.pid_max=,
DefaultTasksMax= defaults to 4915, but
might be greater in other systems or smaller in OS containers.
DefaultLimitCPU=, DefaultLimitFSIZE=,
DefaultLimitDATA=, DefaultLimitSTACK=,
DefaultLimitCORE=, DefaultLimitRSS=,
DefaultLimitNOFILE=, DefaultLimitAS=,
DefaultLimitNPROC=, DefaultLimitMEMLOCK=,
DefaultLimitLOCKS=, DefaultLimitSIGPENDING=,
DefaultLimitMSGQUEUE=, DefaultLimitNICE=,
DefaultLimitRTPRIO=, DefaultLimitRTTIME=
These settings control various default resource limits
for processes executed by units. See
setrlimit(2) for details. These
settings may be overridden in individual units using the corresponding
LimitXXX= directives and they accept the same parameter syntax, see
systemd.exec(5) for details. Note that these resource limits are only
defaults for units, they are not applied to the service manager process (i.e.
PID 1) itself.
DefaultOOMPolicy=
Configure the default policy for reacting to processes
being killed by the Linux Out-Of-Memory (OOM) killer. This may be used to pick
a global default for the per-unit
OOMPolicy= setting. See
systemd.service(5) for details. Note that this default is not used for
services that have
Delegate= turned on.