MD5(3bsd) | 3bsd | MD5(3bsd) |
MD5Init
,
MD5Update
, MD5Pad
,
MD5Final
, MD5Transform
,
MD5End
, MD5File
,
MD5FileChunk
, MD5Data
— calculate the RSA Data Security, Inc., ``MD5''
message digest
library “libbsd”
#include
<sys/types.h>
#include <md5.h>
(See
libbsd(7) for include usage.)
void
MD5Init
(MD5_CTX
*context);
void
MD5Update
(MD5_CTX
*context, const uint8_t
*data, size_t
len);
void
MD5Pad
(MD5_CTX
*context);
void
MD5Final
(uint8_t
digest[MD5_DIGEST_LENGTH],
MD5_CTX *context);
void
MD5Transform
(uint32_t
state[4], uint8_t
block[MD5_BLOCK_LENGTH]);
char *
MD5End
(MD5_CTX
*context, char
*buf);
char *
MD5File
(const
char *filename, char
*buf);
char *
MD5FileChunk
(const
char *filename, char
*buf, off_t offset,
off_t length);
char *
MD5Data
(const
uint8_t *data, size_t
len, char
*buf);
The MD5 functions calculate a 128-bit cryptographic checksum (digest) for any number of input bytes. A cryptographic checksum is a one-way hash-function, that is, you cannot find (except by exhaustive search) the input corresponding to a particular output. This net result is a “fingerprint” of the input-data, which doesn't disclose the actual input.
MD4 has been broken; it should only be used where necessary for backward compatibility. MD5 has not yet (1999-02-11) been broken, but recent attacks have cast some doubt on its security properties. The attacks on both MD4 and MD5 are both in the nature of finding “collisions” - that is, multiple inputs which hash to the same value; it is still unlikely for an attacker to be able to determine the exact original input given a hash value.
The
MD5Init
(),
MD5Update
(),
and MD5Final
() functions are the core functions.
Allocate an MD5_CTX, initialize it with MD5Init
(),
run over the data with MD5Update
(), and finally
extract the result using MD5Final
().
The
MD5Pad
()
function can be used to apply padding to the message digest as in
MD5Final
(),
but the current context can still be used with
MD5Update
().
The
MD5Transform
()
function is used by
MD5Update
()
to hash 512-bit blocks and forms the core of the algorithm. Most programs
should use the interface provided by MD5Init
(),
MD5Update
() and MD5Final
()
instead of calling MD5Transform
() directly.
MD5End
()
is a wrapper for
MD5Final
()
which converts the return value to an MD5_DIGEST_STRING_LENGTH-character
(including the terminating '\0') ASCII string which represents the 128 bits
in hexadecimal.
MD5File
()
calculates the digest of a file, and uses MD5End
()
to return the result. If the file cannot be opened, a null pointer is
returned.
MD5FileChunk
()
behaves like MD5File
() but calculates the digest
only for that portion of the file starting at offset
and continuing for length bytes or until end of file
is reached, whichever comes first. A zero length can
be specified to read until end of file. A negative
length or offset will be
ignored.
MD5Data
()
calculates the digest of a chunk of data in memory, and uses
MD5End
() to return the result.
When using
MD5End
(),
MD5File
(), MD5FileChunk
(),
or MD5Data
(), the buf argument
can be a null pointer, in which case the returned string is allocated with
malloc(3) and subsequently must be explicitly deallocated
using free(3) after use. If the buf
argument is non-null it must point to at least MD5_DIGEST_STRING_LENGTH
characters of buffer space.
cksum(1), md5(1), adler32(3), md4(3), rmd160(3), sfv(3), sha1(3), sha2(3), suma(3), tiger(3), whirlpool(3)
R. Rivest, The MD4 Message-Digest Algorithm, RFC 1186.
R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321.
RSA Laboratories, Frequently Asked Questions About today's Cryptography, <http://www.rsa.com/rsalabs/faq/>.
H. Dobbertin, Alf Swindles Ann, CryptoBytes, 1(3):5, 1995.
MJ. B. Robshaw, On Recent Results for MD4 and MD5, RSA Laboratories Bulletin, 4, November 12, 1996.
Hans Dobbertin, Cryptanalysis of MD5 Compress.
These functions appeared in OpenBSD 2.0.
The original MD5 routines were developed by RSA Data Security, Inc., and published in the above references. This code is derived from a public domain implementation written by Colin Plumb.
The MD5End
(),
MD5File
(), MD5FileChunk
(),
and MD5Data
() helper functions are derived from code
written by Poul-Henning Kamp.
Collisions have been found for the full versions of both MD4 and MD5 as well as strong attacks against the SHA-0 and SHA-1 family. The use of sha2(3), or rmd160(3) is recommended instead.
April 29, 2004 | Debian |