PDL::Graphics::Gnuplot(3pm) | User Contributed Perl Documentation | PDL::Graphics::Gnuplot(3pm) |
PDL::Graphics::Gnuplot - Gnuplot-based plotting for PDL
pdl> use PDL::Graphics::Gnuplot; pdl> $x = sequence(101) - 50; pdl> gplot($x**2); pdl> gplot($x**2,{xr=>[0,50]}); pdl> gplot( {title => 'Parabola with error bars'}, with => 'xyerrorbars', legend => 'Parabola', $x**2 * 10, abs($x)/10, abs($x)*5 ); pdl> $xy = zeroes(21,21)->ndcoords - pdl(10,10); pdl> $z = inner($xy, $xy); pdl> gplot({title => 'Heat map', trid => 1, view => [0,0] }, with => 'image', xvals($z),yvals($z),zeroes($z),$z*2 ); pdl> $w = gpwin(); # constructor pdl> $pi = 3.14159; pdl> $theta = zeroes(200)->xlinvals(0, 6*$pi); pdl> $z = zeroes(200)->xlinvals(0, 5); pdl> $w->plot3d(cos($theta), sin($theta), $z); pdl> $w->terminfo(); # get information
This module allows PDL data to be plotted using Gnuplot as a backend for 2D and 3D plotting and image display. Gnuplot (not affiliated with the GNU project) is a venerable, open-source program that produces both interactive and publication-quality plots on many different output devices. It is available through most Linux repositories, on MacOS, and from its website <http://www.gnuplot.info>.
It is not necessary to understand the gnuplot syntax to generate basic, or even complex, plots - though the full syntax is available for advanced users who want the full flexibility of the Gnuplot backend.
For a very quick demonstration of the power of this module, see this YouTube demo video <https://www.youtube.com/watch?v=hUXDQL3rZ_0>, and others on visualisation of tesseract assembly <https://www.youtube.com/watch?v=ykQmNrSKqGQ> and rotation <https://www.youtube.com/watch?v=6tpsPYBrHy0>.
Gnuplot recognizes both hard-copy and interactive plotting devices, and on interactive devices (like X11) it is possible to pan, scale, and rotate both 2-D and 3-D plots interactively. You can also enter graphical data through mouse clicks on the device window. On some hardcopy devices (e.g. "PDF") that support multipage output, it is necessary to close the device after plotting to ensure a valid file is written out.
"PDL::Graphics::Gnuplot" exports two routines by default: a constructor, "gpwin()" and a general purpose plot routine, "gplot()". Depending on options, "gplot()" can produce line plots, scatterplots, error boxes, "candlesticks", images, or any overlain combination of these elements; or perspective views of 3-D renderings such as surface plots.
A call to "gplot()" looks like:
gplot({temp_plot_options}, # optional hash ref curve_options, data, data, ... , curve_options, data, data, ... );
The data entries are columns to be plotted. They are normally an optional ordinate and a required abscissa, but some plot modes can use more columns than that. The collection of columns is called a "tuple". Each column must be a separate PDL or an ARRAY ref. If all the columns are PDLs, you can add extra dimensions to make threaded collections of curves.
PDL::Graphics::Gnuplot also implements an object oriented interface. Plot objects track individual gnuplot subprocesses. Direct calls to "gplot()" are tracked through a global object that stores globally set configuration variables.
The "gplot()" sub (or the "plot()" method) collects two kinds of options hash: plot options, which describe the overall structure of the plot being produced (e.g. axis specifications, window size, and title), and curve options, which describe the behavior of individual traces or collections of points being plotted. In addition, the module itself supports options that allow direct pass-through of plotting commands to the underlying gnuplot process.
Gnuplot generates many kinds of plot, from basic line plots and histograms to scaled labels. Individual plots can be 2-D or 3-D, and different sets of plot styles are supported in each mode. Plots can be sent to a variety of devices; see the description of plot options, below.
You can specify what type of graphics output you want, but in most cases doing nothing will cause a plot to be rendered on your screen: with X windows on UNIX or Linux systems, with an XQuartz windows on MacOS, or with a native window on Microsoft Windows.
You select a plot style with the "with" curve option, and feed in columns of data (usually ordinate followed by abscissa). The collection of columns is called a "tuple". These plots have two columns in their tuples:
$x = xvals(51)-25; $y = $x**2; gplot(with=>'points', $x, $y); # Draw points on a parabola gplot(with=>'lines', $x, $y); # Draw a parabola gplot({title=>"Parabolic fit"}, with=>"yerrorbars", legend=>"data", $x, $y+(random($y)-0.5)*2*$y/20, pdl($y/20), with=>"lines", legend=>"fit", $x, $y);
Normal threading rules apply across the arguments to a given plot.
All data are required to be supplied as either PDLs or list refs. If you use a list ref as a data column, then normal threading is disabled. For example:
$x = xvals(5); $y = xvals(5)**2; $labels = ['one','two','three','four','five']; gplot(with=>'labels',$x,$y,$labels);
See below for supported curve styles.
Modifying plots
Gnuplot is built around a monolithic plot model - it is not possible to add new data directly to a plot without redrawing the entire plot. To support replotting, PDL::Graphics::Gnuplot stores the data you plot in the plot object, so that you can add new data with the "replot" command:
$w=gpwin(x11); $x=xvals(101)/100; $y=$x; $w->plot($x,$y); $w->replot($x,$y*$y);
For speed, the data are *not* disconnected from their original variables - so this will plot X vs. sqrt(X):
$x = xvals(101)/100; $y = xvals(101)/100; $w->plot($x,$y); $y->inplace->sqrt; $w->replot();
Plotting to an image file or device
PDL:Graphics::Gnuplot can plot to most of the devices supported by gnuplot itself. You can specify the file type with the "output" method or the object constructor "gplot". Either one will allow you to name a type of file to produce, and a collection of options speciic to that type of output file.
Image plotting
Several of the plot styles accept image data. The tuple parameters work the same way as for basic plots, but each "column" is a 2-D PDL rather than a 1-D PDL. As a special case, the "with image" plot style accepts either a 2-D or a 3-D PDL. If you pass in 3-D PDL, the extra dimension can have size 1, 3, or 4. It is interpreted as running across (R,G,B,A) color planes.
3-D plotting
You can plot in 3-D by setting the plot option "trid" to a true value. Three dimensional plots accept either 1-D or 2-D PDLs as data columns. If you feed in 2-D "columns", many of the common plot styles will generalize appropriately to 3-D. For example, to plot a 2-D surface as a line grid, you can use the "lines" style and feed in 2-D columns instead of 1-D columns.
Most gnuplot output devices include the option to markup "enhanced text". That means text is interpreted so that you can change its font and size, and insert superscripts and subscripts into labels. Codes are:
There are several contexts where you can specify color of plot elements. In those places, you can specify colors exactly as in the Gnuplot manual, or more tersely. In general, a color spec can be any one of the following:
Gnuplot itself supports a wide range of plot styles, and all are supported by PDL::Graphics::Gnuplot. Most of the basic plot styles collect tuples of 1-D columns in 2-D mode (for ordinary plots), or either 1-D or 2-D "columns" in 3-D mode (for grid surface plots and such). Image modes always collect tuples made of 2-D "columns".
You can pass in 1-D columns as either PDLs or ARRAY refs. That is important for plot types (such as "labels") that require a collection of strings rather than numeric data.
Each plot style can by modified to support particular colors or line style options. These modifications get passed in as curve options (see below). For example, to plot a blue line you can use "with=>'lines',lc=>'blue'". To match the autogenerated style of a particular line you can use the "ls" curve option.
The GNuplot plot styles supported are:
The plot options are parameters that affect the whole plot, like the title of the plot, the axis labels, the extents, 2d/3d selection, etc. All the plot options are described below in "Plot Options". Plot options can be set in the plot object, or passed to the plotting methods directly. Plot options can be passed in as a leading interpolated hash, as a leading hash ref, or as a trailing hash ref in the argument list to any of the main plotting routines ("gplot", "plot", "image", etc.).
The curve options are parameters that affect only one curve in particular. Each call to "plot()" can contain many curves, and options for a particular curve precede the data for that curve in the argument list. The actual type of curve (the "with" option) is persistent, but all other curve options and modifiers are not. An example:
gplot( with => 'points', $x, $a, {axes=> x1y2}, $x, $b, with => 'lines', $x, $c );
This plots 3 curves: $a vs. $x plotted with points on the main y-axis (this is the default), $b vs. $x plotted with points on the secondary y axis, and $c vs. $x plotted with lines on the main y-axis (the default). Note that the curve options can be supplied as either an inline hash or a hash ref.
All the curve options are described below in "Curve Options".
If you want to plot multiple curves of the same type without setting any curve options explicitly, you must include an empty hash ref between the tuples for subsequent lines, as in:
gplot( $x, $a, {}, $x, $b, {}, $x, $c );
Following the curve options in the "plot()" argument list is the actual data being plotted. Each output data point is a "tuple" whose size varies depending on what is being plotted. For example if we're making a simple 2D x-y plot, each tuple has 2 values; if we're making a 3d plot with each point having variable size and color, each tuple has 5 values (x,y,z,size,color). Each tuple element must be passed separately. For ordinary 2-D plots, the 0 dim of the tuple elements runs across plotted point. PDL threading is active, so you can plot multiple curves with similar curve options on a normal 2-D plot, just by stacking data inside the passed-in PDLs. (An exception is that threading is disabled if one or more of the data elements is a list ref).
PDLs vs list refs
The usual way to pass in data is as a PDL -- one PDL per column of data in the tuple. But strings, in particular, cannot easily be hammered into PDLs. Therefore any column in each tuple can be a list ref containing values (either numeric or string). The column is interpreted using the usual polymorphous cast-behind-your-back behavior of Perl. For the sake of sanity, if even one list ref is present in a tuple, then threading is disabled in that tuple: everything has to have a nice 1-D shape.
Implicit domains
When making a simple 2D plot, if exactly 1 dimension is missing, PDL::Graphics::Gnuplot will use sequence(N) as the domain. This is why code like "plot(pdl(1,5,3,4,4) )" works. Only one PDL is given here, but the plot type ("lines" by default) requires 2 elements per tuple. We are thus exactly 1 ndarray short; sequence(5) is used as the missing domain PDL. This is thus equivalent to "plot(sequence(5), pdl(1,5,3,4,4) )".
If plotting in 3d or displaying an image, an implicit domain will be used if we are exactly 2 ndarrays short. In this case, PDL::Graphics::Gnuplot will use a 2D grid as a domain. Example:
my $xy = zeros(21,21)->ndcoords - pdl(10,10); gplot({'3d' => 1}, with => 'points', inner($xy, $xy)); gplot( with => 'image', sin(rvals(51,51)) );
Here the only given ndarray has dimensions (21,21). This is a 3D plot, so we are exactly 2 ndarrays short. Thus, PDL::Graphics::Gnuplot generates an implicit domain, corresponding to a 21-by-21 grid.
"PDL::Graphics::Gnuplot" requires explicit separators between tuples for different plots, so it is always clear from the arguments you pass in just how many columns you are supplying. For example, "plot($a,$b)" will plot $b vs. $a. If you actually want to plot an overlay of both $a and $b against array index, you want "plot($a,{},$b)" instead. The "{}" is a hash ref containing a collection of all the curve options that you are changing between the two curves -- in this case, zero of them.
PDL::Graphics::Gnuplot supports four styles of image plot, via the "with" curve option.
The "image" style accepts a single image plane and displays it using the palette (pseudocolor map) that is specified in the plot options for that plot. As a special case, if you supply as data a (3xWxH) or (WxHx3) PDL it is treated as an RGB image and displayed with the "rgbimage" style (below), provided there are at least 5 pixels in each of the other two dimensions (just to be sure). For quick image display there is also an "image" method:
use PDL::Graphics::Gnuplot qw/image gplot/; $im = sin(rvals(51,51)/2); image( $im ); # display the image gplot( with=>'image', $im ); # display the image (longer form)
The colors are autoscaled in both cases. To set a particular color range, use the 'cbrange' plot option:
image( {cbrange=>[0,1]}, $im );
You can plot rgb images directly with the image style, just by including a 3rd dimension of size 3 on your image:
$rgbim = pdl( xvals($im), yvals($im),rvals($im)/sqrt(2)); image( $rgbim ); # display an RGB image gplot( with=>'image', $rgbim ); # display an RGB image (longer form)
Some additional plot styles exist to specify RGB and RGB transparent forms directly. These are the "with" styles "rgbimage" and "rgbalpha". For each of them you must specify the channels as separate PDLs:
gplot( with=>'rgbimage', $rgbim->dog ); # RGB the long way gplot( with=>'rgbalpha', $rgbim->dog, 255*($im>0) ); # RGBA the long way
According to the gnuplot specification you can also give X and Y values for each pixel, as in
gplot( with=>'image', xvals($im), yvals($im), $im )
but this appears not to work properly for anything more complicated than a trivial matrix of X and Y values.
PDL::Graphics::Gnuplot provides a "fits" plot style that interprets World Coordinate System (WCS) information supplied in the header of the scientific image format FITS. The image is displayed in rectified scientific coordinates, rather than in pixel coordinates. You can plot FITS images in scientific coordinates with
gplot( with=>'fits', $fitsdata );
The fits plot style accepts a modifier "resample" (which may be abbreviated), that allows you to downsample and/or rectify the image before it is passed to the Gnuplot back-end. This is useful either to cut down on the burden of transferring large blocks of image data or to rectify images with nonlinear WCS transformations in their headers. (gnuplot itself has a bug that prevents direct rendering of images in nonlinear coordinates).
gplot( with=>'fits res 200', $fitsdata ); gplot( with=>'fits res 100,400',$fitsdata );
to specify that the output are to be resampled onto a square 200x200 grid or a 100x400 grid, respectively. The resample sizes must be positive integers.
Several of the graphical backends of Gnuplot are interactive, allowing you to pan, zoom, rotate and measure the data interactively in the plot window. See the Gnuplot documentation for details about how to do this. Some terminals (such as "wxt") are persistently interactive. Other terminals (such as "x11") maintain their interactivity only while the underlying gnuplot process is active -- i.e. until another plot is created with the same PDL::Graphics::Gnuplot object, or until the perl process exits (whichever comes first). Still others (the hardcopy devices) aren't interactive at all.
Some interactive devices (notably "wxt" and "x11") also support mouse input: you can write PDL scripts that accept and manipulate graphical input from the plotted window.
Gnuplot controls plot style with "plot options" that configure and specify virtually all aspects of the plot to be produced. Plot options are tracked as stored state in the PDL::Graphics::Gnuplot object. You can set them by passing them in to the constructor, to an "options" method, or to the "plot" method itself.
Nearly all the underlying Gnuplot plot options are supported, as well as some additional options that are parsed by the module itself for convenience.
There are many, many plot options. For convenience, we've grouped them by general category below. Each group has a heading "POs for <foo>", describing the category. You can skip below them all if you want to read about curve options or other aspects of PDL::Graphics::Gnuplot.
You can send plots to a variety of different devices; Gnuplot calls devices "terminals". With the object-oriented interface, you must set the output device with the constructor "PDL::Graphics::Gnuplot::new" (or the exported constructor "gpwin") or the "output" method. If you use the simple non-object interface, you can set the output with the "terminal", "termoption", and "output" plot options.
"terminal" sets the output device type for Gnuplot, and "output" sets the actual output file or window number.
"device" and "hardcopy" are for convenience. "device" offers a PGPLOT-style device specifier in "filename/device" format (the "filename" gets sent to the "output" option, the "device" gets sent to the "terminal" option). "hardcopy" takes an output file name, attempts to parse out a file suffix and infer a device type. "hardcopy" also uses a common set of terminal options needed to fill an entire letter page with a plot.
For finer grained control of the plotting environment, you can send "terminal options" to Gnuplot. If you set the terminal directly with plot options, you can include terminal options by interpolating them into a string, as in "terminal jpeg interlace butt crop", or you can use the constructor "new" (also exported as "gpwin"), which parses terminal options as an argument list.
The routine "PDL::Graphics::Gnuplot::terminfo" prints a list of all available terminals or, if you pass in a terminal name, options accepted by that terminal.
The options described here are
Gnuplot supports "enhanced" text escapes on most terminals; see "text", below.
The "title" option lets you set a title for the whole plot.
Individual plot components are labeled with the "label" options. "xlabel", "x2label", "ylabel", and "y2label" specify axis titles for 2-D plots. The "zlabel" works for 3-D plots. The "cblabel" option sets the label for the color box, in plot types that have one (e.g. image display).
(Don't be confused by "clabel", which doesn't set a label at all, rather specifies the printf format used by contour labels in contour plots.)
"key" controls where the plot key (that relates line/symbol style to label) is placed on the plot. It takes a scalar boolean indicating whether to turn the key on (with default values) or off, or a list ref containing any of the following arguments (all are optional) in the order listed:
These keywords set the location of the key -- "inside/outside" is relative to the plot border; the margin keywords indicate location in the margins of the plot; and at <pos> (where <pos> is a comma-delimited string containing (x,y): "key=>[at=>"0.5,0.5"]") is an exact location to place the key.
The options described here are
Normally, tick marks and their labels are applied to the border of a plot, and no extra axes (e.g. the y=0 line) nor coordinate grids are shown. You can specify which (if any) zero axes should be drawn, and which (if any) borders should be drawn.
The "border" option controls whether the plot itself has a border drawn around it. You can feed it a scalar boolean value to indicate whether borders should be drawn around the plot -- or you can feed in a list ref containing options. The options are all optional but must be supplied in the order given.
The default if you set a true value for "border" is to draw all border lines. You can feed in a single integer value containing a bit mask, to draw only some border lines. From LSB to MSB, the coded lines are bottom, left, top, right for 2D plots -- e.g. 5 will draw bottom and top borders but neither left nor right.
In three dimensions, 12 bits are used to describe the twelve edges of a cube surrounding the plot. In groups of three, the first four control the bottom (xy) plane edges in the same order as in the 2-D plots; the middle four control the vertical edges that rise from the clockwise end of the bottom plane edges; and the last four control the top plane edges.
These are Gnuplot's usual three options for line control.
The "grid" option indicates whether gridlines should be drawn on each axis. It takes a list ref of arguments, each of which is either "no" or "m" or "", followed by an axis name and "tics" -- e.g. "grid=>["noxtics","ymtics"]" draws no X gridlines and draws (horizontal) Y gridlines on Y axis major and minor tics, while "grid=>["xtics","ytics"]" or "grid=>["xtics ytics"]" will draw both vertical (X) and horizontal (Y) grid lines on major tics.
vTo draw a coordinate grid with default values, set "grid=>1". For more control, feed in a list ref with zero or more of the following parameters, in order:
The "zeroaxis" keyword indicates whether to actually draw each axis line at the corresponding zero along its indicated dimension. For example, to draw the X axis (y=0), use "xzeroaxis=>1". If you just want the axis turned on with default values, you can feed in a Boolean scalar; if you want to set its parameters, you can feed in a list ref containing linewidth, linestyle, and linetype (with appropriate parameters for each), e.g. "xzeroaxis=>[linewidth=>2]".
The options described here are
Gnuplot accepts explicit ranges as plot options for all axes. Each option accepts a list ref with (min, max). If either min or max is missing, then the opposite limit is autoscaled. The x and y ranges refer to the usual ordinate and abscissa of the plot; x2 and y2 refer to alternate ordinate and abscissa; z if for 3-D plots; r is for polar plots; t, u, and v are for parametric plots. cb is for the color box on plots that include it (see "color", below).
"rrange" is used for radial coordinates (which are accessible using the "mapping" plot option, below).
"cbrange" (for 'color box range') sets the range of values over which palette colors (either gray or pseudocolor) are matched. It is valid in any color-mapped plot (including images or palette-mapped lines or points), even if no color box is being displayed for this plot.
"trange", "urange", and "vrange" set ranges for the parametric coordinates if you are plotting a parametric curve.
By default all axes are autoscaled unless you specify a range on that axis, and partially (min or max) autoscaled if you specify a partial range on that axis. "autoscale" allows more explicit control of how autoscaling is performed, on an axis-by-axis basis. It accepts a hash ref, each element of which specifies how a single axis should be autoscaled. Each keyword contains an axis name followed by one of "fix", "min", "max", "fixmin", or "fixmax". You can set all the axes at once by setting the keyword name to ' '. Examples:
autoscale=>{x=>'max',y=>'fix'};
There is an older list ref syntax which is deprecated but still accepted.
To not autoscale an axis at all, specify a range for it. The fix style of autoscaling forces the autoscaler to use the actual min/max of the data as the limit for the corresponding axis -- by default the axis gets extended to the next minor tic (as set by the autoticker or by a tic specification, see below).
"logscale" allows you to turn on logarithmic scaling for any or all axes, and to set the base of the logarithm. It takes a list ref, the first element of which is a string mushing together the names of all the axes to scale logarithmically, and the second of which is the base of the logarithm: "logscale=>[xy=>10]". You can also leave off the base if you want base-10 logs: "logscale=>['xy']".
The options described here are
Axis tick marks are called "tics" within Gnuplot, and they are extensively controllable via the "{axis}tics" options. In particular, major and minor ticks are supported, as are arbitrarily variable length ticks, non-equally spaced ticks, and arbitrarily labelled ticks. Support exists for time formatted ticks (see "POs for time data values" below).
By default, gnuplot will automatically place major and minor ticks. You can turn off ticks on an axis by setting the appropriate {foo}tics option to a defined, false scalar value (e.g. "xtics=>0"). If you want to set major tics to happen at a regular specified intervals, you can set the appropriate tics option to a nonzero scalar value (e.g. "xtics=>2" to specify a tic every 2 units on the X axis). To use default values for the tick positioning, specify an empty hash or array ref (e.g. "xtics=>{}"), or a string containing only whitespace (e.g. "xtics=>' '").
If you prepend an 'm' to any tics option, it affects minor tics instead of major tics (major tics typically show units; minor tics typically show fractions of a unit).
Each tics option can accept a hash ref containing options to pass to Gnuplot. You can also pass in a snippet of gnuplot command, as either a string or an array ref -- but those techniques are deprecated and may disappear in a future version of "PDL:Graphics::Gnuplot".
The keywords are case-insensitive and may be abbreviated, just as with other option types. They are:
If you pass in undef, tics get the default length. If you pass in a scalar, major tics get scaled. You can pass in an array ref to scale minor tics too.
The labels should be a nested list ref that is a collection of duals or triplets. Each dual or triplet should contain [label, position, minorflag], as in "labels=>[["one",1,0],["three-halves",1.5,1],["two",2,0]]".
For example, to turn on inward mirrored X axis ticks with diagonal Arial 9 text, use:
xtics => {axis=>1,mirror=>1,in=>1,rotate=>45,font=>'Arial,9'}
or
xtics => ['axis','mirror','in','rotate by 45','font "Arial,9"']
The options described here are
Gnuplot contains support for plotting absolute time and date on any of its axes, with conventional formatting. There are three main methods, which are mutually exclusive (i.e. you should not attempt to use two at once on the same axis).
Due to limitations within gnuplot, the time resolution in this mode is limited to 1 second - if you want fractional seconds, you must use numerically formatted times (and/or create your own tick labels using the "labels" suboption to the "?tics" option.
Timestamp format specifiers
Time format specifiers use the following printf-like codes:
The options described here are
Adjusting the size, location, and margins of the plot on the plotting surface is something of a null operation for most single plots -- but you can tweak the placement and size of the plot with these options. That is particularly useful for multiplots, where you might like to make an inset plot or to lay out a set of plots in a custom way.
The margin options accept scalar values -- either a positive number of character heights or widths of margin around the plot compared to the edge of the device window, or a string that starts with "at screen " and interpolates a number containing the fraction of the plot window offset. The "at screen" technique allows exact plot placement and is an alternative to the "origin" and "size" options below.
The "offsets" option allows you to put an empty boundary around the data, inside the plot borders, in an autosacaled graph. The offsets only affect the x1 and y1 axes, and only in 2D plot commands. "offsets" accepts a list ref with four values for the offsets, which are given in scientific (plotted) axis units.
The "origin" option lets you specify the origin (lower left corner) of an individual plot on the plotting window. The coordinates are screen coordinates -- i.e. fraction of the total plotting window.
The size option lets you adjust the size and aspect ratio of the plot, as an absolute fraction of the plot window size. You feed in fractional ratios, as in "size=>[$xfrac, $yfrac]". You can also feed in some keywords to adjust the aspect ratio of the plot. The size option overrides any autoscaling that is done by the auto-layout in multiplot mode, so use with caution -- particularly if you are multiplotting. You can use "size" to adjust the aspect ratio of a plot, but this is deprecated in favor of the pseudo-option "justify".
"justify" sets the scientific aspect ratio of a 2-D plot. Unity yields a plot with a square scientific aspect ratio. Larger numbers yield taller plots.
"clip" controls the border between the plotted data and the border of the plot. There are three clip types supported: points, one, and two. You can set them independently by passing in booleans with their names: "clip=>[points=>1,two=>0]".
Color plots are supported via RGB and pseudocolor. Plots that use pseudcolor or grayscale can have a "color box" that shows the photometric meaning of the color.
The colorbox generally appears when necessary but can be controlled manually with the "colorbox" option. "colorbox" accepts a scalar boolean value indicating whether or no to draw a color box, or a list ref containing additional options. The options are all, well, optional but must appear in the order given:
colorbox => [ 'user', 'origin'=>"$x,$y", 'size' => "$x,$y" ]
The "palette" option offers many arguments that are not fully documented in this version but are explained in the gnuplot manual. It offers complete control over the pseudocolor mapping function.
For simple color maps, "clut" gives access to a set of named color maps. (from "Color Look Up Table"). A few existing color maps are: "default", "gray", "sepia", "ocean", "rainbow", "heat1", "heat2", and "wheel". To see a complete list, specify an invalid table, e.g. "clut=>'xxx'". "clut" is maintained but is superseded by "pc" and "pcp" (below), which give access to a better variety of color tables, and have better support for scientific images.
"pseudocolor" (synonym "pc") gives access to the color tables built in to the "PDL::Transform::Color" package, if that package is available. It takes either a color table name or a list ref which is a collection of arguments that get sent to the "PDL::Transform::Color::t_pc" transform definition method. Sending the empty string or undef will generate a list of allowable color table names. Many of the color tables are "photometric" and will render photometric data correctly without gamma correction.
"perceptual" (synonym "pcp") gives the same access to "PDL::Transform::Color" as does "pseudocolor", but the "equal-perceptual-difference" scaling is used -- i.e. input values are gamma-corrected by the module so that uniform shifts in numeric value yield approximately uniform perceptual shifts.
If you use "pseudocolor" or "perceptual", and if "PDL::Transform::Color" can be loaded, then the external module is used to define a custom Gnuplot palette by linear interpolation across 256 values. That palette is then used to translate your monochrome data to a color image. The Gnuplot output is assumed to be sRGB. This is probably OK for most output devices.
If "trid" or its synonym "3d" is true, Gnuplot renders a 3-D plot. This changes the default tuple size from 2 to 3. This option is used to switch between the Gnuplot "plot" and "splot" command, but it is tracked with persistent state just as any other option.
The "view" option controls the viewpoint of the 3-D plot. It takes a list of numbers: "view=>[$rot_x, $rot_z, $scale, $scale_z]". After each number, you can omit the subsequent ones. Alternatively, "view=>['map']" represents the drawing as a map (e.g. for contour plots) and "view=>[equal=>'xy']" forces equal length scales on the X and Y axes regardless of perspective, while "view=>[equal=>'xyz']" sets equal length scales on all three axes.
The "pm3d" option accepts several parameters to control the pm3d plot style, which is a palette-mapped 3d surface. They are not documented here in this version of the module but are explained in the gnuplot manual.
"hidden3d" accepts a list of parameters to control how hidden surfaces are plotted (or not) in 3D. It accepts a boolean argument indicating whether to hide "hidden" surfaces and lines; or a list ref containing parameters that control how hidden surfaces and lines are handled. For details see the gnuplot manual.
"xyplane" sets the location of that plane (which is drawn) relative to the rest of the plot in 3-space. It takes a single string: "at" or "relative", and a number. "xyplane=>[at=>$z]" places the XY plane at the stated Z value (in scientific units) on the plot. "xyplane=>[relative=>$frac]" places the XY plane $frac times the length of the scaled Z axis *below* the Z axis (i.e. 0 places it at the bottom of the plotted Z axis; and -1 places it at the top of the plotted Z axis).
"mapping" takes a single string: "cartesian", "spherical", or "cylindrical". It determines the interpretation of data coordinates in 3-space. (Compare to the "polar" option in 2-D).
Contour plots are only implemented in 3D. To make a normal 2D contour plot, use 3-D mode, but set the view to "map" - which projects the 3-D plot onto its 2-D XY plane. (This is convoluted, for sure -- future versions of this module may have a cleaner way to do it).
"contour" enables contour drawing on surfaces in 3D. It takes a single string, which should be "base", "surface", or "both".
"cntrparam" manages how contours are generated and smoothed. It accepts a list ref with a collection of Gnuplot parameters that are issued one per line; refer to the Gnuplot manual for how to operate it.
You can make 2-D polar plots by setting "polar" to a true value. The ordinate is then plotted as angle, and the abscissa is radius on the plot. The ordinate can be in either radians or degrees, depending on the "angles" parameter
"angles" takes either "degrees" or "radians" (default is radians).
"mapping" is used to set 3-D polar plots, either cylindrical or spherical (see the section on 3-D plotting, above).
You specify plot markup in advance of the plot command, with plot options (or add it later with the "replot" method). The options give you access to a collection of (separately) numbered descriptions that are accumulated into the plot object. To add a markup object to the next plot, supply the appropriate options as a list ref or as a single string. To specify all markup objects at once, supply the appropriate options for all of them as a nested list-of-lists.
To modify an object, you can specify it by number, either by appending the number to the plot option name (e.g. "arrow3") or by supplying it as the first element of the option list for that object.
To remove all objects of a given type, supply undef (e.g. "arrow=>undef").
For example, to place two labels, use the plot option:
label => [["Upper left",at=>"10,10"],["lower right",at=>"20,5"]];
To add a label to an existing plot object, if you don't care about what index number it gets, do this:
$w->options( label=>["my new label",at=>[10,20]] );
If you do care what index number it gets (or want to replace an existing label), do this:
$w->options( label=>[$n, "my replacement label", at=>"10,20"] );
where $w is a Gnuplot object and $n contains the label number you care about.
label - add a text label to the plot.
The "label" option allows adding small bits of text at arbitrary locations on the plot.
Each label specifier list ref accepts the following suboptions, in order. All of them are optional -- if no options other than the index tag are given, then any existing label with that index is deleted.
For examples, please refer to the Gnuplot 4.4 manual, p. 117.
label3=>["foo",at=>"3,4",font=>'"Helvetica,18"']
arrow - place an arrow or callout line on the plot
Works similarly to the "label" option, but with an arrow instead of text.
The arguments, all of which are optional but which must be given in the order listed, are:
object - place a shape on the graph
"object"s are rectangles, ellipses, circles, or polygons that can be placed arbitrarily on the plotting plane.
The arguments, all of which are optional but which must be given in the order listed, are:
You can specify a rectangle with "from=>$pos1, [r]to=>$pos2", with "center=>$pos1, size=>"$w,$h"", or with "at=>$pos1,size=>"$w,$h"".
You can specify an ellipse with "at=>$pos, size=>"$w,$h"" or "center=>$pos, size=>"$w,$h"", followed by "angle=>$a".
You can specify a circle with "at=>$pos," or "center=>$pos,", followed by "size=>$radius" and (optionally) "arc=>"[$begin:$end]"".
You can specify a polygon with "from=>$pos1,to=>$pos2,to=>$pos3,...to=>$posn" or with "from=>$pos1,rto=>$diff1,rto=>$diff2,...rto=>$diffn".
"bars" sets the width and behavior of the tick marks at the ends of error bars. It takes a list containing at most two elements, both of which are optional:
If you pass in the undefined value you get no ticks on errorbars; if you pass in the empty list ref you get default ticks.
"boxwidth" sets the width of drawn boxes in boxplots, candlesticks, and histograms. It takes a list containing at most two elements:
Unless you set "relative", the numeric width sets the width of boxes in X-axis scientific units (on log scales, this is measured at x=1 and the same width is used throughout the plot plane). If "relative" is included, the numeric width is taken to be a multiplier on the default width.
"isosamples" sets isoline density for plotting functions as surfaces. You supply one or two numbers. The first is the number of iso-u lines and the second is the number of iso-v lines. If you only specify one, then the two are taken to be the same. From the gnuplot manual: "An isoline is a curve parameterized by one of the surface parameters while the other surface parameter is fixed. Isolines provide a simple means to display a surface. By fixing the u parameter of surface s(u,v), the iso-u lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter, the iso-v lines of the form c(u)=s(u,v0) are produced".
"pointsize" accepts a single number and scales the size of points used in plots.
"style" provides a great deal of customization for individual plot styles. It is not (yet) fully parsed by PDL::Graphics::Gnuplot; please refer to the Gnuplot manual for details (it is pp. 145ff in the Gnuplot 4.6.1 maual). "style" accepts a hash ref whose keys are plot styles (such as you would feed to the "with" curve option), and whose values are list refs containing keywords and other parameters to modify how each plot style should be displayed.
"locale" is used to control date stamp creation. See the gnuplot manual.
"decimalsign" accepts a character to use in lieu of a "." for the decimalsign. (e.g. in European countries use "decimalsign=>','").
"globalwith" is used as a default plot style if no valid 'with' curve option is present for a given curve.
If set to a nonzero value, "timestamp" causes a time stamp to be placed on the side of the plot, e.g. for keeping track of drafts.
"zero" sets the approximation threshold for zero values within gnuplot. Its default is 1e-8.
"fontpath" sets a font search path for gnuplot. It accepts a collection of file names as a list ref.
Plotting is carried out by sending a collection of commands to an underlying gnuplot process. In general, the plot options cause "set" commands to be sent, configuring gnuplot to make the plot; these are followed by a "plot" or "splot" command and by any cleanup that is necessary to keep gnuplot in a known state.
Provisions exist for sending commands directly to Gnuplot as part of a plot. You can send commands at the top of the configuration but just under the initial "set terminal" and "set output" commands (with the "topcmds" option), at the bottom of the configuration and just before the "plot" command (with the "extracmds" option), or after the plot command (with the "bottomcmds" option). Each of these plot options takes a list ref, each element of which should be one command line for gnuplot.
Most plotting is done with binary data transfer to Gnuplot; however, due to some bugs in Gnuplot binary handling, certain types of plot data are sent in ASCII. In particular, time series and label data require transmission in ASCII (as of Gnuplot 4.4). You can force ASCII transmission of all but image data by explicitly setting the "binary=>0" option.
"dump" is used for debugging. If true, it writes out the gnuplot commands to STDOUT instead of writing to a gnuplot process. Useful to see what commands would be sent to gnuplot. This is a dry run. Note that if the 'binary' option is given (see below), then this dump will contain binary data. If this binary data should be suppressed from the dump, set "dump => 'nobinary'".
"tee" is used for debugging. If true, writes out the gnuplot commands to STDERR in addition to writing to a gnuplot process. This is not a dry run: data is sent to gnuplot and to the log. Useful for debugging I/O issues. Note that if the 'binary' option is given (see below), then this log will contain binary data. If this binary data should be suppressed from the log, set "tee => 'nobinary'".
The curve options describe details of specific curves within a plot. They are in a hash, whose keys are as follows:
The following curve options in this list modify the plot style further. Not all of them are applicable to all plot styles -- for example, it makes no sense to specify a fill style for "with=>lines".
For historical reasons, you can supply the with modifier curve options as a single string in the "with" curve option. That usage is deprecated and will disappear in a future version of PDL::Graphics::Gnuplot.
If you don't specify a "dashtype" curve option, the default behavior matches the behavior of earlier gnuplots: many terminals support a "dashed" terminal/output option, and if you have set that option (with the constructor or with the "output" method) then lines are uniquely dashed by default. To make a single curve solid, specify "dt="0> as a curve option for it; or to make all curves solid, use the constructor or the "output" method to set the terminal option "dashed="0>.
If your gnuplot is older than v5.0, the dashtype curve option is ignored (and causes a warning to be emitted).
There is no "linecolor=>[palette=>variable]" due to Gnuplot's non-orthogonal syntax. To draw line color from the palette, via an additional data column, see the separate "palette" curve option (below).
Any of those fill style specification strings can have a border specification string appended to it. To specify a border, append 'border', and then optionally either 'lt=><type>' or 'lc=><colorspec>' to the string. To specify no border, append 'noborder'.
$w=gpwin(); $r2 = rvals(21,21)**2; $w->plot3d( wi=>'lines', xvals($r2), yvals($r2), $r2 );
will produce a grid of values on a paraboloid. To instead plot a collection of lines using the threaded syntax, try
$w->plot3d( wi=>'lines', cd=>1, xvals($r2), yvals($r2), $r2 );
which will plot 21 separate curves in a threaded manner.
Most of these come directly from Gnuplot commands. See the Gnuplot docs for details.
If we're plotting an ndarray $y of y-values to be plotted sequentially (implicit domain), all you need is
gplot($y);
If we also have a corresponding $x domain, we can plot $y vs. $x with
gplot($x, $y);
Simple style control
To change line thickness:
gplot(with => 'lines',linewidth=>4, $x, $y); gplot(with => 'lines', lw=>4, $x, $y);
To change point size and point type:
gplot(with => 'points',pointtype=>8, $x, $y); gplot(with => 'points',pt=>8, $x, $y);
Errorbars
To plot errorbars that show $y +- 1, plotted with an implicit domain
gplot(with => 'yerrorbars', $y, $y->ones);
Same with an explicit $x domain:
gplot(with => 'yerrorbars', $x, $y, $y->ones);
Symmetric errorbars on both x and y. $x +- 1, $y +- 2:
gplot(with => 'xyerrorbars', $x, $y, $x->ones, 2*$y->ones);
To plot asymmetric errorbars that show the range $y-1 to $y+2 (note that here you must specify the actual errorbar-end positions, NOT just their deviations from the center; this is how Gnuplot does it)
gplot(with => 'yerrorbars', $y, $y - $y->ones, $y + 2*$y->ones);
More multi-value styles
Plotting with variable-size circles (size given in plot units, requires Gnuplot >= 4.4)
gplot(with => 'circles', $x, $y, $radii);
Plotting with a variably-sized arbitrary point type (size given in multiples of the "default" point size)
gplot(with => 'points', pointtype=>7, pointsize=>'variable', $x, $y, $sizes);
Color-coded points
gplot(with => 'points', palette=>1, $x, $y, $colors);
Variable-size AND color-coded circles. A Gnuplot (4.4.0) bug make it necessary to specify the color range here
gplot(cbmin => $mincolor, cbmax => $maxcolor, with => 'circles', palette=>1, $x, $y, $radii, $colors);
General style control works identically for 3D plots as in 2D plots.
To plot a set of 3d points, with a square aspect ratio (squareness requires Gnuplot >= 4.4):
splot(square => 1, $x, $y, $z);
If $xy is a 2D ndarray, we can plot it as a height map on an implicit domain
splot($xy);
Complicated 3D plot with fancy styling:
my $pi = 3.14159; my $theta = zeros(200)->xlinvals(0, 6*$pi); my $z = zeros(200)->xlinvals(0, 5); splot(title => 'double helix', { with => 'linespoints', pointsize=>'variable', pointtype=>7, palette=>1, legend => 'spiral 1' }, { legend => 'spiral 2' }, # 2 sets of x, 2 sets of y, single z PDL::cat( cos($theta), -cos($theta)), PDL::cat( sin($theta), -sin($theta)), $z, # pointsize, color 0.5 + abs(cos($theta)), sin(2*$theta) );
3D plots can be plotted as a heat map.
splot( extracmds => 'set view 0,0', with => 'image', $xy );
To send any plot to a file, instead of to the screen, one can simply do
gplot(hardcopy => 'output.pdf', $x, $y);
The "hardcopy" option is a shorthand for the "terminal" and "output" options. The output device is chosen from the file name suffix.
If you want more (any) control over the output options (e.g. page size, font, etc.) then you can specify the output device using the "output" method or the constructor itself -- or the corresponding plot options in the non-object mode. For example, to generate a PDF of a particular size with a particular font size for the text, one can do
gplot(terminal => 'pdfcairo solid color font ",10" size 11in,8.5in', output => 'output.pdf', $x, $y);
This command is equivalent to the "hardcopy" shorthand used previously, but the fonts and sizes can be changed.
Using the object oriented mode, you could instead say:
$w = gpwin(); $w->plot( $x, $y ); $w->output( pdfcairo, solid=>1, color=>1,font=>',10',size=>[11,8.5,'in'] ); $w->replot(); $w->close();
Many hardcopy output terminals (such as "pdf" and "svg") will not dump their plot to the file unless the file is explicitly closed with a change of output device or a call to "reset", "restart", or "close". This is because those devices support multipage output and also require and end-of-file marker to close the file.
my $win = gpwin('x11'); $win->plot( sin(xvals(45)) * 3.14159/10 );
Here we just plot a simple function. The default plot style is a line. Line plots take a 2-tuple (X and Y values). Since we have supplied only one element, "plot()" understands it to be the Y value (abscissa) of the plot, and supplies value indices as X values -- so we get a plot of just over 2 cycles of the sine wave over an X range across X values from 0 to 44.
$win = gpwin('x11'); $pi = 3.14159; $win->plot( {with => line}, xvals(10)**2, xvals(10), {with => circles}, 2 * xvals(50), 2 * sin(xvals(50) * $pi / 10), xvals(50)/20 );
This plots sqrt(x) in an interesting way, and overplots some circles of varying size. The line plot accepts a 2-tuple, and we supply both X and Y. The circles plot accepts a 3-tuple: X, Y, and R.
$pi = 3.14159; $theta = xvals(201) * 6 * $pi / 200; $z = xvals(201) * 5 / 200; gplot( {trid => 1, title => 'double helix',cbr=>[0,1]}, {with => 'linespoints', pointsize=>'variable', pointtype=>2, palette=>1, legend => ['spiral 1','spiral 2'], cdim=>1}, pdl( cos($theta), -cos($theta) ), # x pdl( sin($theta), -sin($theta) ), # y $z, # z (0.5 + abs(cos($theta))), # pointsize sin($theta/3), # color { with=>'points', pointsize=>'variable', pointtype=>5, palette=>0 }, zeroes(6), # x zeroes(6), # y xvals(6), # z xvals(6)+1 # point size );
This is a 3d plot with variable size and color. There are 5 values in the tuple. The first 2 ndarrays have dimensions (N,2); all the other ndarrays have a single dimension. The "cdim=>1" specifies that each column of data should be one-dimensional. Thus the PDL threading generates 2 distinct curves, with varying values for x,y and identical values for everything else. To label the curves differently, 2 different sets of curve options are given. Omitting the "cdim" curve option would yield a 201x2 grid with the "linespoints" plotstyle, rather than two separate curves.
In addition to the threaded pair of linespoints curves, there are six variable size points plotted as filled squares, as a secondary curve.
Plot options are passed in in two places: as a leading hash ref, and as a trailing hash ref. Any other hash elements or hash refs must be curve options.
Curves are delimited by non-data arguments. After the initial hash ref, curve options for the first curve (the threaded pair of spirals) are passed in as a second hash ref. The curve's data arguments are ended by the first non-data argument (the hash ref with the curve options for the second curve).
use PDL::Graphics::Gnuplot; $w = gpwin( @options ); $w->plot( @plot_args );
gpwin is the PDL::Graphics::Gnuplot exported constructor. It is exported by default and is a synonym for "new PDL::Graphics::Gnuplot(...)". If given no arguments, it creates a plot object with the default terminal settings for your gnuplot. You can also give it the name of a Gnuplot terminal type (e.g. 'x11') and some terminal and output options (see "output").
$w = new PDL::Graphics::Gnuplot; $w->plot( @plot_args ); # # Specify plot options alone $w = new PDL::Graphics::Gnuplot( {%plot_options} ); # # Specify device and device options (and optional default plot options) $w = new PDL::Graphics::Gnuplot( device, %device_options, {%plot_options} ); $w->plot( @plot_args );
Creates a PDL::Graphics::Gnuplot persistent plot object, and connects it to gnuplot.
For convenience, you can specify the output device and its options right here in the constructor. Because different gnuplot devices accept different options, you must specify a device if you want to specify any device configuration options (such as window size, output file, text mode, or default font).
If you don't specify a device type, then the Gnuplot default device for your system gets used. You can set that with an environment variable (check the Gnuplot documentation).
Gnuplot uses the word "terminal" for output devices; you can see a list of terminals supported by PDL::Graphics::Gnuplot by invoking "PDL::Graphics::Gnuplot::terminfo()" (for example in the perldl shell).
For convenience, you can provide default plot options here. If the last argument to "new()" is a trailing hash ref, it is treated as plot options.
After you have created an object, you can change its terminal/output device with the "output" method, which is useful for (e.g.) throwing up an interactive plot and then sending it to a hardcopy device. See "output" for a description of terminal options and how to format them.
Normally, the object connects to the command "gnuplot" in your path, using the "Alien::Gnuplot" module. If you need to specify a binary other than this default, check the "Alien::Gnuplot" documentation.
my $plot = PDL::Graphics::Gnuplot->new({title => 'Object-oriented plot'}); $plot->plot( legend => 'curve', sequence(5) );
$window->output( $device ); $window->output( $device, %device_options ); $window->output( $device, %device_options, {plot_options} ); $window->output( %device_options, {plot_options} ); $window->output( %device_options );
Sets the output device and options for a Gnuplot object. If you omit the $device name, then you get the gnuplot default device (generally "x11", "wxt", or "aqua", depending on platform).
You can control the output device of a PDL::Graphics::Gnuplot object on the fly. That is useful, for example, to replot several versions of the same plot to different output devices (interactive and hardcopy).
Gnuplot interprets terminal options differently per device. PDL::Graphics::Gnuplot attempts to interpret some of the more common ones in a common way. In particular:
The unit string can be in, cm, mm, px, char, or pt. Pixels are taken to be 1 point in size (72 pixels per inch) and dimensions are computed accordingly. Characters are taken to be 12 point in size (6 per inch).
If you don't specify an output device, plots will go to sequentially-numbered files of the form "Plot-<n>.<suf>" in your current working directory. In that case, PDL::Graphics::Gnuplot will report (on STDERR) where the plot ended up.
Antialiasing is done in the gamma=2.2 approximation, to match the sRGB coding that most pixel image files use. (See PDL::Transform::Color for more information).
For a brief description of the terminal options that any one device supports, you can run PDL::Graphics::Gnuplot::terminfo().
As with plot options, terminal options can be abbreviated to the shortest unique string -- so (e.g.) "size" can generally be abbreviated "si" and "monochrome" can be abbreviated "mono" or "mo".
$w=gpwin(); $w->plot(xvals(5)); $w->close;
Close gnuplot process (actually just a synonym for restart)
Some of the gnuplot terminals (e.g. pdf) don't write out a file promptly. The close method closes the associated gnuplot subprocess, forcing the file to be written out. It is implemented as a simple restart operation.
The object preserves the plot state, so "replot" and similar methods still work with the new subprocess.
$w->restart(); PDL::Graphics::Gnuplot::restart();
Restart the gnuplot backend for a plot object
Occasionally the gnuplot backend can get into an unknown state. "restart" kills the gnuplot backend and starts a new one, preserving state in the object. (i.e. "replot" and similar functions work even with the new subprocess).
Called with no arguments, "restart" applies to the global plot object.
$w->reset()
Clear state from the gnuplot backend
Clears all plot option state from the underlying object. All plot options except "terminal", "termoptions", "output", and "multiplot" are cleared. This is similar to the "reset" command supported by gnuplot itself, and in fact it also causes a "reset" to be sent to gnuplot.
$w = new PDL::Graphics::Gnuplot(); $w->options( globalwith=>'lines' ); print %{$w->options()};
Set/get persistent plot options for a plot object
The options method parses plot options into a gnuplot object on a cumulative basis, and returns the resultant options hash.
If called as a sub rather than a method, options() changes the global gnuplot object.
Plot method exported by default (synonym for "PDL::Graphics::Gnuplot::plot")
This is the main plotting routine in PDL::Graphics::Gnuplot.
Each "plot()" call creates a new plot from whole cloth, either creating or overwriting the output for that device.
If you want to add features to an existing plot, use "replot".
"plot()" understands the PDL bad value mechanism. Bad values are omitted from the plot.
$w=gpwin(); $w->plot({temp_plot_options}, # optional curve_options, data, data, ... , # curve_options are optional for the first plot curve_options, data, data, ... , {temp_plot_options});
Most of the arguments are optional.
All of the extensive array of gnuplot plot styles are supported, including images and 3-D plots.
use PDL::Graphics::Gnuplot qw(plot); my $x = sequence(101) - 50; plot($x**2);
See main POD for PDL::Graphics::Gnuplot for details.
You can pass plot options into plot as either a leading or trailing hash ref, or both. If you pass both, the trailing hash ref is parsed last and overrides the leading hash.
For debugging and curiosity purposes, the last plot command issued to gnuplot is maintained in a package global: $PDL::Graphics::Gnuplot::last_plotcmd, and also in each object as the {last_plotcmd} field.
Replot the last plot (possibly with new arguments).
"replot" is similar to gnuplot's "replot" command - it allows you to regenerate the last plot made with this object. You can change the plot by adding new elements to it, modifying options, or even (with the "device" method) changing the output device. "replot" takes the same arguments as "plot".
If you give no arguments at all (or only a plot object) then the plot is simply redrawn. If you give plot arguments, they are added to the new plot exactly as if you'd included them in the original plot element list, and maintained for subsequent replots.
(Compare to 'markup').
Add ephemeral markup to the last plot.
"markup" works exactly the same as "replot", except that any new arguments are not added to the replot list - so you can add temporary markup to a plot and regenerate the plot later without it.
Generate 3D plots. Synonym for "plot(trid => 1, ...)"
Generate 3D plots. Synonym for "plot(trid => 1, ...)"
Generates plots with lines, by default. Shorthand for "plot(globalwith => 'lines', ...)"
Generates plots with points, by default. Shorthand for "plot(globalwith => 'points', ...)"
Displays an image (either greyscale or RGB). Shorthand for "plot(globalwith => 'image', ...)"
Synonym for "image", for people who grew up with PDL::Graphics::PGPLOT and can't remember the closing 'e'
Displays a FITS image. Synonym for "plot(globalwith => 'fits', ...)".
$a = (xvals(101)/100) * 6 * 3.14159/180; $b = sin($a); $w->multiplot(layout=>[2,2,"columnsfirst"]); $w->plot({title=>"points"},with=>"points",$a,$b); $w->plot({title=>"lines"}, with=>"lines", $a,$b); $w->plot({title=>"image"}, with=>"image", $a->(*1) * $b ); $w->end_multi();
Plot multiple plots into a single page of output.
The "multiplot" method enables multiplot mode in gnuplot, which permits multiple plots on a single pane. Plots can be lain out in a grid, or can be lain out freeform using the "size" and "origin" plot options for each of the individual plots.
It is not possible to change the terminal or output device when in multiplot mode; if you try to do that, by setting one of those plot options, PDL::Graphics::Gnuplot will throw an error.
The options hash will accept:
$w=gpwin(); $w->multiplot(layout=>[2,1]); $w->plot({title=>"points},with=>'points',$a,$b); $w->plot({title=>"lines",with=>"lines",$a,$b); $w->end_multi();
Ends a multiplot block (i.e. a block of plots that are meant to render to a single page).
($x,$y,$char,$modstring) = $w->read_mouse($message); $hash = $w->read_mouse($message);
Get a mouse click or keystroke from the active interactive plot window.
For interactive devices (e.g. x11, wxt, aqua), read_mouse lets you accept a keystroke or mouse button input from the gnuplot window. In list context, it returns four arguments containing the reported X, Y, keystroke character, and modifiers packed in a string. In scalar context, it returns a hash ref containing those things.
read_mouse blocks execution for input, but responds gracefully to interrupts.
$points = $w->read_polygon(%opt)
Read in a polygon by accepting mouse clicks. The polygon is returned as a 2xN PDL of ($x,$y) values in scientific units. Acceptable options are:
* %c - expands to "an open" or "a closed"
* %n - number of points currently in the polygon
* %N - number of points expected for the polygon
* %k - list of all keys accepted
* "%%" - %
The code ref receives the arguments ($obj, $c, $poly,$x,$y,$mods), where:
$w->pause_until_close;
Wait until the active interactive plot window is closed (e.g., by clicking the close button, hitting the close key-binding which defaults to "q").
"pause_until_close" blocks execution until the close event.
use PDL::Graphics::Gnuplot qw/terminfo/; terminfo(); # print info about all known terminals terminfo 'aqua'; # print info about the aqua terminal $w = gpwin(); $w->terminfo();
Print out information about gnuplot terminals and their custom option syntax.
The "terminfo" routine is a reference tool to describe the Gnuplot terminal types and the options they accept. It's mainly useful in interactive sessions. It outputs information directly to the terminal.
Everything should work on all platforms that support Gnuplot and Perl. Currently, MacOS, Fedora and Debian Linux, Cygwin, and Microsoft Windows (under both Active State Strawberry Perl) have been tested to work, although the interprocess control link is not as reliable under Microsoft Windows as under POSIX systems. Please report successes or failures on other platforms to the authors. A transcript of a failed run with {tee => 1} would be most helpful.
<https://github.com/drzowie/PDL-Graphics-Gnuplot>
Craig DeForest, "<craig@deforest.org>" and Dima Kogan, "<dima@secretsauce.net>"
Copyright 2011-2013 Craig DeForest and Dima Kogan
This program is free software; you can redistribute it and/or modify it under the terms of either: the GNU General Public License as published by the Free Software Foundation; or the Perl Artistic License included with the Perl language.
See http://dev.perl.org/licenses/ for more information.
2023-02-01 | perl v5.36.0 |