DOKK / manpages / debian 12 / libpdl-linearalgebra-perl / PDL::LinearAlgebra::Complex.3pm.en
Complex(3pm) User Contributed Perl Documentation Complex(3pm)

PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)

 use PDL;
 use PDL::LinearAlgebra::Complex;
 $a = random(cdouble, 100, 100);
 $s = zeroes(cdouble, 100);
 $u = zeroes(cdouble, 100, 100);
 $v = zeroes(cdouble, 100, 100);
 $info = 0;
 $job = 0;
 cgesdd($a, $job, $info, $s , $u, $v);

This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays. #line 68 "Complex.pm"

  Signature: (complex [phys]DL(n);complex  [phys]D(n);complex  [phys]DU(n);complex  [io,phys]B(n,nrhs); int [o,phys]info())

Solves the equation

        A * X = B

where A is an "n" by "n" tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an "n" by "nrhs" matrix.

Note that the equation "A**T*X = B" may be solved by interchanging the order of the arguments DU and DL.

NB This differs from the LINPACK function "cgtsl" in that "DL" starts from its first element, while the LINPACK equivalent starts from its second element.

    Arguments
    =========
    DL:   On entry, DL must contain the (n-1) sub-diagonal elements of A.
          On exit, DL is overwritten by the (n-2) elements of the
          second super-diagonal of the upper triangular matrix U from
          the LU factorization of A, in DL(1), ..., DL(n-2).
    D:    On entry, D must contain the diagonal elements of A.
          On exit, D is overwritten by the n diagonal elements of U.
    DU:   On entry, DU must contain the (n-1) super-diagonal elements of A.
          On exit, DU is overwritten by the (n-1) elements of the
          first super-diagonal of the U.
    B:    On entry, the n by nrhs matrix of right hand side matrix B.
          On exit, if info = 0, the n by nrhs solution matrix X.
    info:   = 0:  successful exit
            < 0:  if info = -i, the i-th argument had an illegal value
            > 0:  if info = i, U(i,i) is exactly zero, and the solution
                  has not been computed.  The factorization has not been
                  completed unless i = n.

 $dl = random(float, 9) + random(float, 9) * i;
 $d = random(float, 10) + random(float, 10) * i;
 $du = random(float, 9) + random(float, 9) * i;
 $b = random(10,5) + random(10,5) * i;
 cgtsv($dl, $d, $du, $b, ($info=null));
 print "X is:\n$b" unless $info;

  Signature: (complex [io]A(m,n); int jobu(); int jobvt(); [o]s(minmn);complex  [o]U(p,p);complex  [o]VT(s,s); int [o]info(); [t]rwork(rworkn))

Complex version of "gesvd" in PDL::LinearAlgebra::Real.

The SVD is written

 A = U * SIGMA * ConjugateTranspose(V)

  Signature: (complex [io]A(m,n); int jobz(); [o]s(minmn);complex  [o]U(p,p);complex  [o]VT(s,s); int [o]info(); int [t]iwork(iworkn))

Complex version of "gesdd" in PDL::LinearAlgebra::Real.

The SVD is written

 A = U * SIGMA * ConjugateTranspose(V)

  Signature: (complex [io]A(m,n); int jobu(); int jobv(); int jobq();complex  [io]B(p,n); int [o]k(); int [o]l();[o]alpha(n);[o]beta(n);complex  [o]U(q,q);complex  [o]V(r,r);complex  [o]Q(s,s); int [o]iwork(n); int [o]info(); [t]rwork(rworkn))

Complex version of "ggsvd" in PDL::LinearAlgebra::Real

  Signature: (complex A(n,n); int jobvl(); int jobvr();complex  [o]w(n);complex  [o]vl(m,m);complex  [o]vr(p,p); int [o]info(); [t]rwork(rworkn))

Complex version of "geev" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n);  int jobvl(); int jobvr(); int balance(); int sense();complex  [o]w(n);complex  [o]vl(m,m);complex  [o]vr(p,p); int [o]ilo(); int [o]ihi(); [o]scale(n); [o]abnrm(); [o]rconde(q); [o]rcondv(r); int [o]info(); [t]rwork(rworkn))

Complex version of "geevx" in PDL::LinearAlgebra::Real

  Signature: (complex A(n,n); int [phys]jobvl();int [phys]jobvr();complex B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]info(); [t]rwork(rworkn))

Complex version of "ggev" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n);int balanc();int jobvl();int jobvr();int sense();complex [io,phys]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]ilo();int [o]ihi();[o]lscale(n);[o]rscale(n);[o]abnrm();[o]bbnrm();[o]rconde(r);[o]rcondv(s);int [o]info(); [t]rwork(rworkn); int [t]bwork(bworkn); int [t]iwork(iworkn))

Complex version of "ggevx" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n);  int jobvs(); int sort();complex  [o]w(n);complex  [o]vs(p,p); int [o]sdim(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)

Complex version of "gees" in PDL::LinearAlgebra::Real

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An complex eigenvalue w is selected if
            select_func(PDL::Complex(w)) is true;
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.

  Signature: (complex [io]A(n,n);  int jobvs(); int sort(); int sense();complex  [o]w(n);complex [o]vs(p,p); int [o]sdim(); [o]rconde();[o]rcondv(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)

Complex version of "geesx" in PDL::LinearAlgebra::Real

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An complex eigenvalue w is selected if
            select_func(PDL::Complex(w)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.

  Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();int [o]info(); [t]rwork(rworkn); int [t]bwork(bworkn);SV* select_func)

Complex version of "ggees" in PDL::LinearAlgebra::Real

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An eigenvalue w = w/beta is selected if
            select_func(PDL::Complex(w), PDL::Complex(beta)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+2.

  Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();[o]rconde(q=2);[o]rcondv(q=2);int [o]info(); [t]rwork(rworkn); int [t]bwork(bworkn); int [t]iwork(iworkn);SV* select_func)

Complex version of "ggeesx" in PDL::LinearAlgebra::Real

    select_func:
            If sort = 1, select_func is used to select eigenvalues to sort
            to the top left of the Schur form.
            If sort = 0, select_func is not referenced.
            An eigenvalue w = w/beta is selected if
            select_func(PDL::Complex(w), PDL::Complex(beta)) is true; 
            Note that a selected complex eigenvalue may no longer
            satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
            ordering may change the value of complex eigenvalues
            (especially if the eigenvalue is ill-conditioned); in this
            case info is set to N+3.

  Signature: (complex [io]A(n,n); int jobz(); int uplo(); [o]w(n); int [o]info(); [t]rwork(rworkn))

Complex version of "syev" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io,phys]A(n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

Complex version of "syevd" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex A(n,n);  int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex  [o]z(p,p);int [o]ifail(n); int [o]info(); [t]rwork(rworkn); int [t]iwork(iworkn))

Complex version of "syevx" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [phys]A(n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n);complex  [o,phys]z(p,q);int [o,phys]isuppz(r); int [o,phys]info())

Complex version of "syevr" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info(); [t]rwork(rworkn))

Complex version of "sygv" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io,phys]A(n,n);int [phys]itype();int jobz(); int uplo();complex [io,phys]B(n,n);[o,phys]w(n); int [o,phys]info())

Complex version of "sygvd" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io]A(n,n);int itype();int jobz();int range();
          int uplo();complex [io]B(n,n);vl();vu();int il();
          int iu();abstol();int [o]m();[o]w(n);complex 
          [o]Z(p,p);int [o]ifail(n);int [o]info(); [t]rwork(rworkn); int [t]iwork(iworkn);
        )

Complex version of "sygvx" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io,phys]A(n,n);complex   [io,phys]B(n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of "gesv" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n); int trans(); int fact();complex  [io]B(n,m);complex  [io]af(n,n); int [io]ipiv(n); int [io]equed(); [o]r(p); [o]c(q);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); [o]rpvgrw(); int [o]info(); [t]rwork(rworkn); [t]work(rworkn))

Complex version of "gesvx" in PDL::LinearAlgebra::Real.

    trans:  Specifies the form of the system of equations:
            = 0:  A * X = B     (No transpose)   
            = 1:  A' * X = B  (Transpose)   
            = 2:  A**H * X = B  (Conjugate transpose)

  Signature: (complex [io,phys]A(n,n);  int uplo();complex  [io,phys]B(n,m); int [o]ipiv(n); int [o]info())

Complex version of "sysv" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(n,n); int uplo(); int fact();complex  [phys]B(n,m);complex  [io,phys]af(n,n); int [io,phys]ipiv(n);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))

Complex version of "sysvx" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n);  int uplo();complex  [io,phys]B(n,m); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of "sysv" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex A(n,n); int uplo(); int fact();complex  B(n,m);complex  [io]af(n,n); int [io]ipiv(n);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))

Complex version of "sysvx" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io,phys]A(n,n);  int uplo();complex  [io,phys]B(n,m); int [o,phys]info())

Complex version of "posv" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

  Signature: (complex [io]A(n,n); int uplo(); int fact();complex  [io]B(n,m);complex  [io]af(n,n); int [io]equed(); [o]s(p);complex  [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(rworkn); [t]work(workn))

Complex version of "posvx" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

  Signature: (complex [io,phys]A(m,n); int trans();complex  [io,phys]B(p,q);int [o,phys]info())

Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of "gels" in PDL::LinearAlgebra::Real.

    trans:  = 0: the linear system involves A;
            = 1: the linear system involves A**H.

  Signature: (complex [io]A(m,n);complex  [io]B(p,q); rcond(); int [io]jpvt(n); int [o]rank();int [o]info(); [t]rwork(rworkn))

Complex version of "gelsy" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(m,n);complex  [io]B(p,q); rcond(); [o]s(r); int [o]rank();int [o]info(); [t]rwork(rworkn))

Complex version of "gelss" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(m,n);complex  [io]B(p,q); rcond(); [o]s(minmn); int [o]rank();int [o]info(); int [t]iwork(iworkn); [t]rwork(rworkn))

Complex version of "gelsd" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(m,n);complex  [phys]B(p,n);complex [io,phys]c(m);complex [phys]d(p);complex [o,phys]x(n);int [o,phys]info())

Complex version of "gglse" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(n,m);complex  [phys]B(n,p);complex [phys]d(n);complex [o,phys]x(m);complex [o,phys]y(p);int [o,phys]info())

Complex version of "ggglm" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(m,n); int [o]ipiv(p); int [o]info())

Complex version of "getrf" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(m,n); int [o]ipiv(p); int [o]info())

Complex version of "getf2" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of "sytrf" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

Complex version of "sytf2" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info(); [t]work(workn))

Complex version of "sytrf" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())

Complex version of "sytf2" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info())

Complex version of "potrf" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

  Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info())

Complex version of "potf2" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

  Signature: (complex [io,phys]A(n,n); int [phys]ipiv(n); int [o,phys]info())

Complex version of "getri" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn))

Complex version of "sytri" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn))

Complex version of "sytri" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info())

Complex version of "potri" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n); int uplo(); int diag(); int [o,phys]info())

Complex version of "trtri" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n); int uplo(); int diag(); int [o,phys]info())

Complex version of "trti2" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(n,n); int trans();complex  [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of "getrs" in PDL::LinearAlgebra::Real

    Arguments   
    =========   
        trans:   = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

  Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of "sytrs" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info())

Complex version of "sytrs" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex [phys]A(n,n); int uplo();complex  [io,phys]B(n,m); int [o,phys]info())

Complex version of "potrs" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

  Signature: (complex [phys]A(n,n); int uplo(); int trans(); int diag();complex [io,phys]B(n,m); int [o,phys]info())

Complex version of "trtrs" in PDL::LinearAlgebra::Real

    Arguments   
    =========   
        trans:   = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

  Signature: (complex [phys]A(n,n); int uplo(); int trans(); int diag(); int normin();complex [io,phys]x(n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info())

Complex version of "latrs" in PDL::LinearAlgebra::Real

    Arguments   
    =========   
        trans:   = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

  Signature: (complex A(n,n); int norm(); anorm(); [o]rcond();int [o]info(); [t]rwork(rworkn); [t]work(workn))

Complex version of "gecon" in PDL::LinearAlgebra::Real

  Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn))

Complex version of "sycon" in PDL::LinearAlgebra::Real

  Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn))

Complex version of "sycon" in PDL::LinearAlgebra::Real for Hermitian matrix

  Signature: (complex A(n,n); int uplo(); anorm(); [o]rcond();int [o]info(); [t]work(workn); [t]rwork(n))

Complex version of "pocon" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix

  Signature: (complex A(n,n); int norm();int uplo();int diag(); [o]rcond();int [o]info(); [t]work(workn); [t]rwork(n))

Complex version of "trcon" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(m,n); int [io]jpvt(n);complex  [o]tau(k); int [o]info(); [t]rwork(rworkn))

Complex version of "geqp3" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(m,n);complex  [o,phys]tau(k); int [o,phys]info())

Complex version of "geqrf" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(m,n);complex  [phys]tau(k); int [o,phys]info())

Complex version of "orgqr" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(p,k); int side(); int trans();complex  [phys]tau(k);complex  [io,phys]C(m,n);int [o,phys]info())

Complex version of "ormqr" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

  Signature: (complex [io,phys]A(m,n);complex  [o,phys]tau(k); int [o,phys]info())

Complex version of "gelqf" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(m,n);complex  [phys]tau(k); int [o,phys]info())

Complex version of "orglq" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(k,p); int side(); int trans();complex  [phys]tau(k);complex  [io,phys]C(m,n);int [o,phys]info())

Complex version of "ormlq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

  Signature: (complex [io,phys]A(m,n);complex  [o,phys]tau(k); int [o,phys]info())

Complex version of "geqlf" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(m,n);complex  [phys]tau(k); int [o,phys]info())

  Signature: (complex [phys]A(p,k); int side(); int trans();complex  [phys]tau(k);complex  [io,phys]C(m,n);int [o,phys]info())

Complex version of "ormql" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

  Signature: (complex [io,phys]A(m,n);complex  [o,phys]tau(k); int [o,phys]info())

Complex version of "gerqf" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(m,n);complex  [phys]tau(k); int [o,phys]info())

Complex version of "orgrq" in PDL::LinearAlgebra::Real.

  Signature: (complex [phys]A(k,p); int side(); int trans();complex  [phys]tau(k);complex  [io,phys]C(m,n);int [o,phys]info())

Complex version of "ormrq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

  Signature: (complex [io,phys]A(m,n);complex  [o,phys]tau(k); int [o,phys]info())

Complex version of "tzrzf" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(k,p); int side(); int trans();complex  [phys]tau(k);complex  [io,phys]C(m,n);int [o,phys]info())

Complex version of "ormrz" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.

  Signature: (complex [io,phys]A(n,n); int [phys]ilo();int [phys]ihi();complex [o,phys]tau(k); int [o,phys]info())

Complex version of "gehrd" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n); int [phys]ilo();int [phys]ihi();complex [phys]tau(k); int [o,phys]info())

Complex version of "orghr" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]H(n,n); int job();int compz();int [phys]ilo();int [phys]ihi();complex [o,phys]w(n);complex  [o,phys]Z(m,m); int [o,phys]info())

Complex version of "hseqr" in PDL::LinearAlgebra::Real

  Signature: (complex [io]T(n,n); int side();int howmny();int select(q);complex [o]VL(m,m);complex  [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn))

Complex version of "trevc" in PDL::LinearAlgebra::Real

  Signature: (complex [io]A(n,n); int side();int howmny();complex  [io]B(n,n);int select(q);complex [o]VL(m,m);complex  [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn))

Complex version of "tgevc" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info())

Complex version of "gebal" in PDL::LinearAlgebra::Real

  Signature: (complex A(n,m); int norm(); [o]b(); [t]work(workn))

Complex version of "lange" in PDL::LinearAlgebra::Real

  Signature: (complex A(n,n); int uplo(); int norm(); [o]b(); [t]work(workn))

Complex version of "lansy" in PDL::LinearAlgebra::Real

  Signature: (complex A(m,n); int uplo(); int norm();int diag(); [o]b(); [t]work(workn))

Complex version of "lantr" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(m,n); int transa(); int transb();complex  [phys]B(p,q);complex [phys]alpha();complex  [phys]beta();complex  [io,phys]C(r,s))

Complex version of "gemm" in PDL::LinearAlgebra::Real.

    Arguments   
    =========   
        transa:  = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;
        transb:  = 0:  No transpose;
                 = 1:  Transpose; 
                 = 2:  Conjugate transpose;

  Signature: (complex [phys]A(m,n);complex  [phys]B(p,m);complex  [o,phys]C(p,n))

Complex version of "mmult" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(n,m);complex  [phys]B(p,m);complex  [o,phys]C(p,n))

Complex version of "crossprod" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(m,n); int uplo(); int trans();complex  [phys]alpha();complex  [phys]beta();complex  [io,phys]C(p,p))

Complex version of "syrk" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]a(n);complex [phys]b(n);complex [o]c())

Complex version of "dot" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]a(n);complex [phys]b(n);complex [o,phys]c())

Forms the dot product of two vectors, conjugating the first vector.

  Signature: (complex [phys]a(n);complex [phys] alpha();complex [io,phys]b(n))

Complex version of "axpy" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]a(n);[o]b())

Complex version of "nrm2" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]a(n);[o]b())

Complex version of "asum" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]a(n);complex scale())

Complex version of "scal" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]a(n);scale())

Scales a complex vector by a real constant.

  Signature: (complex [io,phys]a();complex [phys]b();[o,phys]c();complex  [o,phys]s())

Complex version of "rotg" in PDL::LinearAlgebra::Real

  Signature: (complex [phys]A(m,n); int uplo();complex  [o,phys]B(p,n))

Complex version of "lacpy" in PDL::LinearAlgebra::Real

  Signature: (complex [io,phys]A(m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p))

Complex version of "laswp" in PDL::LinearAlgebra::Real

  Signature: (A(c=2,m,n);int uplo();[o] C(c=2,m,n))

Copy triangular part to another matrix. If uplo == 0 copy upper triangular part.

ctricpy does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

  Signature: (x(c,n,m);y(c,n,p);[o]out(c,n,q))

Combine two 3D ndarrays into a single ndarray. This routine does backward and forward dataflow automatically.

cmstack does not process bad values. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

  Signature: (A(c=2,n,n);[o]Y(c=2,n,n);[o]out(c=2,p); [t]rwork(rworkn))

Complex version of "charpol" in PDL::LinearAlgebra::Real

Copyright (C) Grégory Vanuxem 2005-2018.

This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.

2023-03-23 perl v5.36.0