geo(2rheolef) | rheolef | geo(2rheolef) |
geo - finite element mesh (rheolef-7.2)
This class is a container for distributed finite element meshes. It is mainly a table of geo_element(6). Let omega be a geo: then, its i-th element is K = omega[i].
In addition, the geo class provides accessors to nodes. Let jv = K[j] be the vertex index of the j-th vertex of the geo_element(6) K. Then, the physical coordinates of this vertex are given by omega.node(jv).
Finally, the geo class provides a list of domains, e.g. some parts of the boundary. A domain named 'left' obtain via omega['left'] and this accessor returns the domain as a geo object, i.e. a table of geo_element(6).
Lower dimension geo_element(6) could be acceded via omega.get_geo_element (subdim, i). E.g. when subdim=1 we obtain the i-th edge of the mesh.
The following code lists all elements and nodes of the mesh.
cout << omega.size() << " " << omega.n_node() << endl;
for (size_t i = 0, n = omega.size(); i < n; ++i) {
const geo_element& K = omega[i];
cout << K.name();
for (size_t j = 0, m = K.size(); j < m; ++j)
cout << " " << K[j];
cout << endl;
}
for (size_t jv = 0, nv = omega.n_node(); jv < nv; ++jv)
cout << omega.node(jv) << endl;
In a distributed environment, the accessors are similar to those of the disarray(4) class. Let dis_i be the index of an element in the global mesh. Then omega.dis_get_geo_element (dim, dis_i) returns the corresponding geo_element(6). Elements at the neighbour of partition boundaries are available for such a global access. For others elements, that belong to others partitions, communications should be organized as for the disarray(4) class.
This documentation has been generated from file main/lib/geo.h
The geo class is an alias to the geo_basic class
typedef geo_basic<Float,rheo_default_memory_model> geo;
The geo_basic class provides an interface, via the smart_pointer(7) class family, to a mesh container:
template <class T> class geo_basic<T,sequential> : public smart_pointer_clone<geo_abstract_rep<T,sequential> > { public: // typedefs:
typedef sequential memory_type;
typedef geo_abstract_rep<T,sequential> rep;
typedef geo_rep<T,sequential> rep_geo_rep;
typedef smart_pointer_clone<rep> base;
typedef typename rep::size_type size_type;
typedef typename rep::node_type node_type;
typedef typename rep::variant_type variant_type;
typedef typename rep::reference reference;
typedef typename rep::const_reference const_reference;
typedef typename rep::iterator iterator;
typedef typename rep::const_iterator const_iterator;
typedef typename rep::iterator_by_variant iterator_by_variant;
typedef typename rep::const_iterator_by_variant const_iterator_by_variant;
typedef typename rep::coordinate_type coordinate_type;
typedef typename rep::geo_element_map_type geo_element_map_type; // allocators:
geo_basic ();
geo_basic (std::string name, const communicator& comm = communicator());
void load (std::string name, const communicator& comm = communicator());
geo_basic (const domain_indirect_basic<sequential>& dom, const geo_basic<T,sequential>& omega);
// build from_list (for level set)
geo_basic (
const geo_basic<T,sequential>& lambda,
const disarray<point_basic<T>,sequential>& node_list,
const std::array<disarray<geo_element_auto<heap_allocator<size_type> >,sequential>,
reference_element::max_variant>& elt_list)
: base (new_macro(rep_geo_rep(lambda,node_list,elt_list))) {} // accessors:
std::string name() const { return base::data().name(); }
std::string familyname() const { return base::data().familyname(); }
size_type dimension() const { return base::data().dimension(); }
size_type map_dimension() const { return base::data().map_dimension(); }
bool is_broken() const { return base::data().is_broken(); }
size_type serial_number() const { return base::data().serial_number(); }
size_type variant() const { return base::data().variant(); }
coordinate_type coordinate_system() const { return base::data().coordinate_system(); }
std::string coordinate_system_name() const { return space_constant::coordinate_system_name(coordinate_system()); }
const basis_basic<T>& get_piola_basis() const { return base::data().get_piola_basis(); }
size_type order() const { return base::data().get_piola_basis().degree(); }
const node_type& xmin() const { return base::data().xmin(); }
const node_type& xmax() const { return base::data().xmax(); }
const T& hmin() const { return base::data().hmin(); }
const T& hmax() const { return base::data().hmax(); }
const distributor& geo_element_ownership(size_type dim) const { return base::data().geo_element_ownership(dim); }
const geo_size& sizes() const { return base::data().sizes(); }
const geo_size& ios_sizes() const { return base::data().ios_sizes(); }
const_reference get_geo_element (size_type dim, size_type ige) const { return base::data().get_geo_element (dim, ige); }
const_reference dis_get_geo_element (size_type dim, size_type dis_ige) const
{ return get_geo_element (dim, dis_ige); }
const geo_element& bgd2dom_geo_element (const geo_element& bgd_K) const { return base::data().bgd2dom_geo_element (bgd_K); }
const geo_element& dom2bgd_geo_element (const geo_element& dom_K) const { return base::data().dom2bgd_geo_element (dom_K); }
size_type neighbour (size_type ie, size_type loc_isid) const {
return base::data().neighbour (ie, loc_isid); }
void neighbour_guard() const { base::data().neighbour_guard(); }
size_type n_node() const { return base::data().n_node(); }
const node_type& node(size_type inod) const { return base::data().node(inod); }
const node_type& dis_node(size_type dis_inod) const { return base::data().dis_node(dis_inod); }
void dis_inod (const geo_element& K, std::vector<size_type>& dis_inod) const {
return base::data().dis_inod(K,dis_inod); }
const disarray<node_type,sequential>& get_nodes() const { return base::data().get_nodes(); }
size_type dis_inod2dis_iv (size_type dis_inod) const { return base::data().dis_inod2dis_iv(dis_inod); }
size_type n_domain_indirect () const { return base::data().n_domain_indirect (); }
bool have_domain_indirect (const std::string& name) const { return base::data().have_domain_indirect (name); }
const domain_indirect_basic<sequential>& get_domain_indirect (size_type i) const {
return base::data().get_domain_indirect (i); }
const domain_indirect_basic<sequential>& get_domain_indirect (const std::string& name) const {
return base::data().get_domain_indirect (name); }
void insert_domain_indirect (const domain_indirect_basic<sequential>& dom) const {
base::data().insert_domain_indirect (dom); }
size_type n_domain () const { return base::data().n_domain_indirect (); }
geo_basic<T,sequential> get_domain (size_type i) const;
geo_basic<T,sequential> operator[] (const std::string& name) const;
geo_basic<T,sequential> boundary() const;
geo_basic<T,sequential> internal_sides() const;
geo_basic<T,sequential> sides() const; // modifiers:
void set_name (std::string name);
void set_dimension (size_type dim);
void set_serial_number (size_type i);
void reset_order (size_type order);
void set_coordinate_system (coordinate_type sys_coord);
void set_coordinate_system (std::string sys_coord_name) { set_coordinate_system (space_constant::coordinate_system(sys_coord_name)); }
void set_nodes (const disarray<node_type,sequential>& x); // extended accessors:
const communicator& comm() const { return geo_element_ownership (0).comm(); }
size_type size(size_type dim) const { return base::data().geo_element_ownership(dim).size(); }
size_type dis_size(size_type dim) const { return base::data().geo_element_ownership(dim).dis_size(); }
size_type size() const { return size (map_dimension()); }
size_type dis_size() const { return dis_size (map_dimension()); }
size_type n_vertex() const { return size (0); }
size_type dis_n_vertex() const { return dis_size (0); }
const_reference operator[] (size_type ie) const { return get_geo_element (map_dimension(), ie); }
const_iterator begin (size_type dim) const { return base::data().begin(dim); }
const_iterator end (size_type dim) const { return base::data().end (dim); }
const_iterator begin () const { return begin(map_dimension()); }
const_iterator end () const { return end (map_dimension()); } // comparator:
bool operator== (const geo_basic<T,sequential>& omega2) const { return base::data().operator== (omega2.data()); } // i/o:
void save (std::string filename = "") const;
}; template <class T, class M> idiststream& operator>> (idiststream& ips, geo_basic<T,M>& omega); template <class T, class M> odiststream& operator<< (odiststream& ops, const geo_basic<T,M>& omega);
Pierre Saramito <Pierre.Saramito@imag.fr>
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.
Mon Sep 19 2022 | Version 7.2 |