MPI_Rget_accumulate(3) | MPI | MPI_Rget_accumulate(3) |
MPI_Rget_accumulate - Perform an atomic, one-sided read-and-accumulate
int MPI_Rget_accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype, void *result_addr, int result_count, MPI_Datatype result_datatype, int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype, MPI_Op op, MPI_Win win, MPI_Request *request)
This operations is atomic with respect to other "accumulate" operations.
The get and accumulate steps are executed atomically for each basic element in the datatype (see MPI 3.0 Section 11.7 for details). The predefined operation MPI_REPLACE provides fetch-and-set behavior.
The basic components of both the origin and target datatype must be the same predefined datatype (e.g., all MPI_INT or all MPI_DOUBLE_PRECISION ).
All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK ) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.
All MPI objects (e.g., MPI_Datatype , MPI_Comm ) are of type INTEGER in Fortran.
All MPI routines (except MPI_Wtime and MPI_Wtick ) return an error value; C routines as the value of the function and Fortran routines in the last argument. Before the value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Comm_set_errhandler (for communicators), MPI_File_set_errhandler (for files), and MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine MPI_Errhandler_set may be used but its use is deprecated. The predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error; however, MPI implementations will attempt to continue whenever possible.
MPI_Get_accumulate MPI_Fetch_and_op
2/22/2022 |