DOKK / manpages / debian 12 / ocaml-man / Stdlib.Bigarray.3o.en
Stdlib.Bigarray(3o) OCaml library Stdlib.Bigarray(3o)

Stdlib.Bigarray - no description

Module Stdlib.Bigarray

Module Bigarray
: (module Stdlib__Bigarray)

Bigarrays can contain elements of the following kinds:

-IEEE single precision (32 bits) floating-point numbers ( Bigarray.float32_elt ),

-IEEE double precision (64 bits) floating-point numbers ( Bigarray.float64_elt ),

-IEEE single precision (2 * 32 bits) floating-point complex numbers ( Bigarray.complex32_elt ),

-IEEE double precision (2 * 64 bits) floating-point complex numbers ( Bigarray.complex64_elt ),

-8-bit integers (signed or unsigned) ( Bigarray.int8_signed_elt or Bigarray.int8_unsigned_elt ),

-16-bit integers (signed or unsigned) ( Bigarray.int16_signed_elt or Bigarray.int16_unsigned_elt ),

-OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures) ( Bigarray.int_elt ),

-32-bit signed integers ( Bigarray.int32_elt ),

-64-bit signed integers ( Bigarray.int64_elt ),

-platform-native signed integers (32 bits on 32-bit architectures, 64 bits on 64-bit architectures) ( Bigarray.nativeint_elt ).

Each element kind is represented at the type level by one of the *_elt types defined below (defined with a single constructor instead of abstract types for technical injectivity reasons).

type float32_elt =
| Float32_elt

type float64_elt =
| Float64_elt

type int8_signed_elt =
| Int8_signed_elt

type int8_unsigned_elt =
| Int8_unsigned_elt

type int16_signed_elt =
| Int16_signed_elt

type int16_unsigned_elt =
| Int16_unsigned_elt

type int32_elt =
| Int32_elt

type int64_elt =
| Int64_elt

type int_elt =
| Int_elt

type nativeint_elt =
| Nativeint_elt

type complex32_elt =
| Complex32_elt

type complex64_elt =
| Complex64_elt

type ('a, 'b) kind =
| Float32 : (float, float32_elt) kind
| Float64 : (float, float64_elt) kind
| Int8_signed : (int, int8_signed_elt) kind
| Int8_unsigned : (int, int8_unsigned_elt) kind
| Int16_signed : (int, int16_signed_elt) kind
| Int16_unsigned : (int, int16_unsigned_elt) kind
| Int32 : (int32, int32_elt) kind
| Int64 : (int64, int64_elt) kind
| Int : (int, int_elt) kind
| Nativeint : (nativeint, nativeint_elt) kind
| Complex32 : (Complex.t, complex32_elt) kind
| Complex64 : (Complex.t, complex64_elt) kind
| Char : (char, int8_unsigned_elt) kind

To each element kind is associated an OCaml type, which is the type of OCaml values that can be stored in the Bigarray or read back from it. This type is not necessarily the same as the type of the array elements proper: for instance, a Bigarray whose elements are of kind float32_elt contains 32-bit single precision floats, but reading or writing one of its elements from OCaml uses the OCaml type float , which is 64-bit double precision floats.

The GADT type ('a, 'b) kind captures this association of an OCaml type 'a for values read or written in the Bigarray, and of an element kind 'b which represents the actual contents of the Bigarray. Its constructors list all possible associations of OCaml types with element kinds, and are re-exported below for backward-compatibility reasons.

Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:


let zero : type a b. (a, b) kind -> a = function
| Float32 -> 0.0 | Complex32 -> Complex.zero
| Float64 -> 0.0 | Complex64 -> Complex.zero
| Int8_signed -> 0 | Int8_unsigned -> 0
| Int16_signed -> 0 | Int16_unsigned -> 0
| Int32 -> 0l | Int64 -> 0L
| Int -> 0 | Nativeint -> 0n
| Char -> '\000'

val float32 : (float, float32_elt) kind

See Bigarray.char .

val float64 : (float, float64_elt) kind

See Bigarray.char .

val complex32 : (Complex.t, complex32_elt) kind

See Bigarray.char .

val complex64 : (Complex.t, complex64_elt) kind

See Bigarray.char .

val int8_signed : (int, int8_signed_elt) kind

See Bigarray.char .

val int8_unsigned : (int, int8_unsigned_elt) kind

See Bigarray.char .

val int16_signed : (int, int16_signed_elt) kind

See Bigarray.char .

val int16_unsigned : (int, int16_unsigned_elt) kind

See Bigarray.char .

val int : (int, int_elt) kind

See Bigarray.char .

val int32 : (int32, int32_elt) kind

See Bigarray.char .

val int64 : (int64, int64_elt) kind

See Bigarray.char .

val nativeint : (nativeint, nativeint_elt) kind

See Bigarray.char .

val char : (char, int8_unsigned_elt) kind

As shown by the types of the values above, Bigarrays of kind float32_elt and float64_elt are accessed using the OCaml type float . Bigarrays of complex kinds complex32_elt , complex64_elt are accessed with the OCaml type Complex.t . Bigarrays of integer kinds are accessed using the smallest OCaml integer type large enough to represent the array elements: int for 8- and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays; int32 for 32-bit integer Bigarrays; int64 for 64-bit integer Bigarrays; and nativeint for platform-native integer Bigarrays. Finally, Bigarrays of kind int8_unsigned_elt can also be accessed as arrays of characters instead of arrays of small integers, by using the kind value char instead of int8_unsigned .

val kind_size_in_bytes : ('a, 'b) kind -> int

kind_size_in_bytes k is the number of bytes used to store an element of type k .

Since 4.03.0

type c_layout =
| C_layout_typ

See Bigarray.fortran_layout .

type fortran_layout =
| Fortran_layout_typ

To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.

In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous in memory, followed by all elements of row 1, etc. In other terms, the array elements at (x,y) and (x, y+1) are adjacent in memory.

In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid out in column-major format. That is, for a two-dimensional array, all elements of column 0 are contiguous in memory, followed by all elements of column 1, etc. In other terms, the array elements at (x,y) and (x+1, y) are adjacent in memory.

Each layout style is identified at the type level by the phantom types Bigarray.c_layout and Bigarray.fortran_layout respectively.

The GADT type 'a layout represents one of the two supported memory layouts: C-style or Fortran-style. Its constructors are re-exported as values below for backward-compatibility reasons.

type 'a layout =
| C_layout : c_layout layout
| Fortran_layout : fortran_layout layout

val c_layout : c_layout layout

val fortran_layout : fortran_layout layout

module Genarray : sig end

module Array0 : sig end

Zero-dimensional arrays. The Array0 structure provides operations similar to those of Bigarray.Genarray , but specialized to the case of zero-dimensional arrays that only contain a single scalar value. Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.

Since 4.05.0

module Array1 : sig end

One-dimensional arrays. The Array1 structure provides operations similar to those of Bigarray.Genarray , but specialized to the case of one-dimensional arrays. (The Bigarray.Array2 and Bigarray.Array3 structures below provide operations specialized for two- and three-dimensional arrays.) Statically knowing the number of dimensions of the array allows faster operations, and more precise static type-checking.

module Array2 : sig end

Two-dimensional arrays. The Array2 structure provides operations similar to those of Bigarray.Genarray , but specialized to the case of two-dimensional arrays.

module Array3 : sig end

Three-dimensional arrays. The Array3 structure provides operations similar to those of Bigarray.Genarray , but specialized to the case of three-dimensional arrays.

val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.

Since 4.05.0

val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given one-dimensional Bigarray.

val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given two-dimensional Bigarray.

val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t

Return the generic Bigarray corresponding to the given three-dimensional Bigarray.

val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.

Since 4.05.0

Raises Invalid_argument if the generic Bigarray does not have exactly zero dimension.

val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t

Return the one-dimensional Bigarray corresponding to the given generic Bigarray.

Raises Invalid_argument if the generic Bigarray does not have exactly one dimension.

val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t

Return the two-dimensional Bigarray corresponding to the given generic Bigarray.

Raises Invalid_argument if the generic Bigarray does not have exactly two dimensions.

val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t

Return the three-dimensional Bigarray corresponding to the given generic Bigarray.

Raises Invalid_argument if the generic Bigarray does not have exactly three dimensions.

val reshape : ('a, 'b, 'c) Genarray.t -> int array -> ('a, 'b, 'c) Genarray.t

reshape b [|d1;...;dN|] converts the Bigarray b to a N -dimensional array of dimensions d1 ... dN . The returned array and the original array b share their data and have the same layout. For instance, assuming that b is a one-dimensional array of dimension 12, reshape b [|3;4|] returns a two-dimensional array b' of dimensions 3 and 4. If b has C layout, the element (x,y) of b' corresponds to the element x * 3 + y of b . If b has Fortran layout, the element (x,y) of b' corresponds to the element x + (y - 1) * 4 of b . The returned Bigarray must have exactly the same number of elements as the original Bigarray b . That is, the product of the dimensions of b must be equal to i1 * ... * iN . Otherwise, Invalid_argument is raised.

val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

Specialized version of Bigarray.reshape for reshaping to zero-dimensional arrays.

Since 4.05.0

val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t

Specialized version of Bigarray.reshape for reshaping to one-dimensional arrays.

val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a, 'b, 'c) Array2.t

Specialized version of Bigarray.reshape for reshaping to two-dimensional arrays.

val reshape_3 : ('a, 'b, 'c) Genarray.t -> int -> int -> int -> ('a, 'b, 'c) Array3.t

Specialized version of Bigarray.reshape for reshaping to three-dimensional arrays.

2023-02-12 OCamldoc