pychopper - package documentation
- pychopper.chopper.analyse_hits(hits,
config)
- Segment reads based on alignment hits using dynamic programming. The
algorithm is based on the rule that each primer alignment hit can be used
only once. Hence if a segment is included, the next one has to be
excluded.
- class
pychopper.common_structures.Hit(Ref, RefStart, RefEnd, Query, QueryStart,
QueryEnd, Score)
- Bases: tuple
Create new instance of Hit(Ref, RefStart, RefEnd, Query,
QueryStart, QueryEnd, Score)
- Query
- Alias for field number 3
- Ref
- Alias for field number 0
- RefEnd
- Alias for field number 2
- Score
- Alias for field number 6
- class
pychopper.common_structures.Segment(Left, Start, End, Right, Strand,
Len)
- Bases: tuple
Create new instance of Segment(Left, Start, End, Right,
Strand, Len)
- End
- Alias for field number 2
- Left
- Alias for field number 0
- Len
- Alias for field number 5
- Right
- Alias for field number 3
- Start
- Alias for field number 1
- Strand
- Alias for field number 4
- class
pychopper.report.Report(pdf)
- Bases: object
Class for plotting utilities on the top of matplotlib. Plots
are saved in the specified file through the PDF backend.
- close()
- Close PDF backend. Do not forget to call this at the end of your script or
your output will be damaged!
- plot_arrays(data_map,
title='', xlab='', ylab='', marker='.', legend_loc='best', legend=True,
vlines=None, vlcolor='green', vlwitdh=0.5)
- Plot multiple pairs of data arrays.
- Parameters
- self -- object.
- data_map -- A dictionary with labels as keys and tupples of data
arrays (x,y) as values.
- title -- Figure title.
- xlab -- X axis label.
- ylab -- Y axis label.
- marker -- Marker passed to the plot function.
- legend_loc -- Location of legend.
- legend -- Plot legend if True
- vlines -- Dictionary with labels and positions of vertical lines to
draw.
- vlcolor -- Color of vertical lines drawn.
- vlwidth -- Width of vertical lines drawn.
- Returns
- None
- Return
type
- object
- pychopper.seq_utils.base_complement(k)
- Return complement of base.
Performs the subsitutions: A<=>T, C<=>G, X=>X
for both upper and lower case. The return value is identical to the
argument for all other values.
- pychopper.seq_utils.mean_qual(quals,
qround=False, tab=[1.0, 0.7943282347242815, 0.6309573444801932,
0.5011872336272722, 0.3981071705534972, 0.31622776601683794,
0.251188643150958, 0.19952623149688797, 0.15848931924611134,
0.12589254117941673, 0.1, 0.07943282347242814, 0.06309573444801933,
0.05011872336272722, 0.039810717055349734, 0.03162277660168379,
0.025118864315095794, 0.0199526231496888, 0.015848931924611134,
0.012589254117941675, 0.01, 0.007943282347242814, 0.00630957344480193,
0.005011872336272725, 0.003981071705534973, 0.0031622776601683794,
0.0025118864315095794, 0.001995262314968879, 0.001584893192461114,
0.0012589254117941675, 0.001, 0.0007943282347242813, 0.000630957344480193,
0.0005011872336272725, 0.00039810717055349735, 0.00031622776601683794,
0.00025118864315095795, 0.00019952623149688788, 0.00015848931924611142,
0.00012589254117941674, 0.0001, 7.943282347242822e-05,
6.309573444801929e-05, 5.011872336272725e-05, 3.9810717055349695e-05,
3.1622776601683795e-05, 2.5118864315095822e-05, 1.9952623149688786e-05,
1.584893192461114e-05, 1.2589254117941661e-05, 1e-05, 7.943282347242822e-06,
6.30957344480193e-06, 5.011872336272725e-06, 3.981071705534969e-06,
3.162277660168379e-06, 2.5118864315095823e-06, 1.9952623149688787e-06,
1.584893192461114e-06, 1.2589254117941661e-06, 1e-06, 7.943282347242822e-07,
6.30957344480193e-07, 5.011872336272725e-07, 3.981071705534969e-07,
3.162277660168379e-07, 2.5118864315095823e-07, 1.9952623149688787e-07,
1.584893192461114e-07, 1.2589254117941662e-07, 1e-07, 7.943282347242822e-08,
6.30957344480193e-08, 5.011872336272725e-08, 3.981071705534969e-08,
3.162277660168379e-08, 2.511886431509582e-08, 1.9952623149688786e-08,
1.5848931924611143e-08, 1.2589254117941661e-08, 1e-08,
7.943282347242822e-09, 6.309573444801943e-09, 5.011872336272715e-09,
3.981071705534969e-09, 3.1622776601683795e-09, 2.511886431509582e-09,
1.9952623149688828e-09, 1.584893192461111e-09, 1.2589254117941663e-09,
1e-09, 7.943282347242822e-10, 6.309573444801942e-10, 5.011872336272714e-10,
3.9810717055349694e-10, 3.1622776601683795e-10, 2.511886431509582e-10,
1.9952623149688828e-10, 1.584893192461111e-10, 1.2589254117941662e-10,
1e-10, 7.943282347242822e-11, 6.309573444801942e-11, 5.011872336272715e-11,
3.9810717055349695e-11, 3.1622776601683794e-11, 2.5118864315095823e-11,
1.9952623149688828e-11, 1.5848931924611107e-11, 1.2589254117941662e-11,
1e-11, 7.943282347242821e-12, 6.309573444801943e-12, 5.011872336272715e-12,
3.9810717055349695e-12, 3.1622776601683794e-12, 2.5118864315095823e-12,
1.9952623149688827e-12, 1.584893192461111e-12, 1.258925411794166e-12, 1e-12,
7.943282347242822e-13, 6.309573444801942e-13, 5.011872336272715e-13,
3.981071705534969e-13, 3.162277660168379e-13, 2.511886431509582e-13,
1.9952623149688827e-13, 1.584893192461111e-13])
- Calculate average basecall quality of a read. Receive the ascii quality
scores of a read and return the average quality for that read First
convert Phred scores to probabilities, calculate average error probability
convert average back to Phred scale
Module contents
- Index
- Module Index
- Search Page
2022, Oxford Nanopore Technologies Ltd.