qhull - convex hull, Delaunay triangulation, Voronoi diagram,
halfspace intersection about a point, hull volume, facet area
qhull- compute convex hulls and related structures
input (stdin): dimension, #points, point coordinates
first comment (non-numeric) is listed in the summary
halfspace: use dim plus one with offsets after coefficients
options (qh-quick.htm):
d - Delaunay triangulation by lifting points to a paraboloid
d Qu - furthest-site Delaunay triangulation (upper convex hull)
v - Voronoi diagram as the dual of the Delaunay triangulation
v Qu - furthest-site Voronoi diagram
H1,1 - Halfspace intersection about [1,1,0,...] via polar duality
Qt - triangulated output
QJ - joggled input instead of merged facets
Tv - verify result: structure, convexity, and point inclusion
. - concise list of all options
- - one-line description of each option
-? - this message
-V - version
Output options (subset):
s - summary of results (default)
i - vertices incident to each facet
n - normals with offsets
p - vertex coordinates (if 'Qc', includes coplanar points)
if 'v', Voronoi vertices
FA - report total area and volume
Fp - halfspace intersections
FS - total area and volume
Fx - extreme points (convex hull vertices)
G - Geomview output (2-d, 3-d and 4-d)
m - Mathematica output (2-d and 3-d)
o - OFF format (if 'v', outputs Voronoi regions)
QVn - print facets that include point n, -n if not
TI file - input file, may be enclosed in single quotes
TO file - output file, may be enclosed in single quotes
examples:
rbox D4 | qhull Tv rbox 1000 s | qhull Tv s FA
rbox 10 D2 | qhull d QJ s i TO result rbox 10 D2 | qhull v Qbb Qt p
rbox 10 D2 | qhull d Qu QJ m rbox 10 D2 | qhull v Qu QJ o
rbox c d D2 | qhull Qc s f Fx | more rbox c | qhull FV n | qhull H Fp
rbox d D12 | qhull QR0 FA rbox c D7 | qhull FA TF1000
rbox y 1000 W0 | qhull Qc rbox c | qhull n
- html manual: html/index.htm
- installation: README.txt
- see also: COPYING.txt, REGISTER.txt, Changes.txt
- WWW: <http://www.qhull.org>
- GIT: <git@github.com:qhull/qhull.git>
- news: <http://www.qhull.org/news>
- Geomview: <http://www.geomview.org>
- news group: <news:comp.graphics.algorithms>
- FAQ: <http://www.faqs.org/faqs/graphics/algorithms-faq/>
- email: qhull@qhull.org
- bug reports: qhull_bug@qhull.org
The sections are:
- INTRODUCTION
- DESCRIPTION, a description of Qhull
- IMPRECISION, how Qhull handles imprecision
- OPTIONS
- Input and output options
- Additional input/output formats
- Precision options
- Geomview options
- Print options
- Qhull options
- Trace options
- BUGS
- E-MAIL
- SEE ALSO
- AUTHORS
- ACKNOWLEGEMENTS
This man page briefly describes all Qhull options. Please report
any mismatches with Qhull's html manual (html/index.htm).
Qhull is a general dimension code for computing convex hulls,
Delaunay triangulations, Voronoi diagram, furthest‐site Voronoi
diagram, furthest‐site Delaunay triangulations, and halfspace
intersections about a point. It implements the Quickhull algorithm for
computing the convex hull. Qhull handles round‐off errors from
floating point arithmetic. It can approximate a convex hull.
The program includes options for hull volume, facet area, partial
hulls, input transformations, randomization, tracing, multiple output
formats, and execution statistics. The program can be called from within
your application. You can view the results in 2‐d, 3‐d and
4‐d with Geomview.
The format of input is the following: first line contains the
dimension, second line contains the number of input points, and point
coordinates follow. The dimension and number of points can be reversed.
Comments and line breaks are ignored. A comment starts with a
non‐numeric character and continues to the end of line. The first
comment is reported in summaries and statistics. Error reporting is better
if there is one point per line.
The default printout option is a short summary. There are many
other output formats.
Qhull implements the Quickhull algorithm for convex hull. This
algorithm combines the 2‐d Quickhull algorithm with the n‐d
beneath‐beyond algorithm [c.f., Preparata & Shamos '85]. It is
similar to the randomized algorithms of Clarkson and others [Clarkson et al.
'93]. The main advantages of Quickhull are output sensitive performance,
reduced space requirements, and automatic handling of precision
problems.
The data structure produced by Qhull consists of vertices, ridges,
and facets. A vertex is a point of the input set. A ridge is a set of d
vertices and two neighboring facets. For example in 3‐d, a ridge is
an edge of the polyhedron. A facet is a set of ridges, a set of neighboring
facets, a set of incident vertices, and a hyperplane equation. For
simplicial facets, the ridges are defined by the vertices and neighboring
facets. When Qhull merges two facets, it produces a non‐simplicial
facet. A non‐simplicial facet has more than d neighbors and may share
more than one ridge with a neighbor.
Since Qhull uses floating point arithmetic, roundoff error may
occur for each calculation. This causes problems for most geometric
algorithms.
Qhull automatically sets option 'C-0' in 2‐d, 3‐d,
and 4‐d, or option 'Qx' in 5‐d and higher. These options
handle precision problems by merging facets. Alternatively, use option 'QJ'
to joggle the input.
With 'C-0', Qhull merges non‐convex facets while
constructing the hull. The remaining facets are clearly convex. With 'Qx',
Qhull merges coplanar horizon facets, flipped facets, concave facets and
duplicated ridges. It merges coplanar facets after constructing the hull.
With 'Qx', coplanar points may be missed, but it appears to be unlikely.
To guarantee triangular output, joggle the input with option 'QJ'.
Facet merging will not occur.
To get a list of the most important options, execute 'qhull -?'.
To get a complete list of options, execute 'qhull -'. To get a complete,
concise list of options, execute 'qhull .'.
Options can be in any order. Capitalized options take an argument
(except 'PG' and 'F' options). Single letters are used for output formats
and precision constants. The other options are grouped into menus: output
formats ('F'), Geomview output ('G'), printing ('P'), Qhull control ('Q'),
and tracing ('T').
- Main options:
- default
- Compute the convex hull of the input points. Report a summary of the
result.
- d
- Compute the Delaunay triangulation by lifting the input points to a
paraboloid. The 'o' option prints the input points and facets. The 'QJ'
option guarantees triangular output. The 'Ft' option prints a
triangulation. It adds points (the centrums) to non‐simplicial
facets.
- v
- Compute the Voronoi diagram from the Delaunay triangulation. The 'p'
option prints the Voronoi vertices. The 'o' option prints the Voronoi
vertices and the vertices in each Voronoi region. It lists regions in site
ID order. The 'Fv' option prints each ridge of the Voronoi diagram. The
first or zero'th vertex indicates the infinity vertex. Its coordinates are
qh_INFINITE (-10.101). It indicates unbounded Voronoi regions or
degenerate Delaunay triangles.
- Hn,n,...
- Compute halfspace intersection about [n,n,0,...]. The input is a set of
halfspaces defined in the same format as 'n', 'Fo', and 'Fi'. Use 'Fp' to
print the intersection points. Use 'Fv' to list the intersection points
for each halfspace. The other output formats display the dual convex hull.
The point [n,n,n,...] is a feasible point for the halfspaces,
i.e., a point that is inside all of the halfspaces (Hx+b <= 0). The
default coordinate value is 0.
The input may start with a feasible point. If so, use 'H' by
itself. The input starts with a feasible point when the first number is
the dimension, the second number is "1", and the coordinates
complete a line. The 'FV' option produces a feasible point for a convex
hull.
- d Qu
- Compute the furthest‐site Delaunay triangulation from the upper
convex hull. The 'o' option prints the input points and facets. The 'QJ'
option guarantees triangular otuput. You can also use 'Ft' to triangulate
via the centrums of non‐simplicial facets.
- v Qu
- Compute the furthest‐site Voronoi diagram. The 'p' option prints
the Voronoi vertices. The 'o' option prints the Voronoi vertices and the
vertices in each Voronoi region. The 'Fv' option prints each ridge of the
Voronoi diagram. The first or zero'th vertex indicates the infinity vertex
at infinity. Its coordinates are qh_INFINITE (-10.101). It indicates
unbounded Voronoi regions and degenerate Delaunay triangles.
- Input/Output
options:
- f
- Print all facets and all fields of each facet.
- G
- Output the hull in Geomview format. For imprecise hulls, Geomview displays
the inner and outer hull. Geomview can also display points, ridges,
vertices, coplanar points, and facet intersections. See below for a list
of options.
For Delaunay triangulations, 'G' displays the corresponding
paraboloid. For halfspace intersection, 'G' displays the dual
polytope.
- i
- Output the incident vertices for each facet. Qhull prints the number of
facets followed by the vertices of each facet. One facet is printed per
line. The numbers are the 0‐relative indices of the corresponding
input points. The facets are oriented.
In 4d and higher, Qhull triangulates non‐simplicial
facets. Each apex (the first vertex) is a created point that corresponds
to the facet's centrum. Its index is greater than the indices of the
input points. Each base corresponds to a simplicial ridge between two
facets. To print the vertices without triangulation, use option 'Fv'. To
print the centrum coordinates, use option 'Ft'. The centrum indices for
option 'i' are one more than the centrum indices for option 'Ft'.
- m
- Output the hull in Mathematica format. Qhull writes a Mathematica file for
2‐d and 3‐d convex hulls and for 2‐d Delaunay
triangulations. Qhull produces a list of objects that you can assign to a
variable in Mathematica, for example: "list= <<
<outputfilename> ". If the object is 2‐d, it can be
visualized by "Show[Graphics[list]] ". For 3‐d objects
the command is "Show[Graphics3D[list]]".
- n
- Output the normal equation for each facet. Qhull prints the dimension
(plus one), the number of facets, and the normals for each facet. The
facet's offset follows its normal coefficients.
- o
- Output the facets in OFF file format. Qhull prints the dimension, number
of points, number of facets, and number of ridges. Then it prints the
coordinates of the input points and the vertices for each facet. Each
facet is on a separate line. The first number is the number of vertices.
The remainder are the indices of the corresponding points. The vertices
are oriented in 2‐d, 3‐d, and in simplicial facets.
For 2‐d Voronoi diagrams, the vertices are sorted by
adjacency, but not oriented. In 3‐d and higher, the Voronoi
vertices are sorted by index. See the 'v' option for more
information.
- p
- Output the coordinates of each vertex point. Qhull prints the dimension,
the number of points, and the coordinates for each vertex. With the 'Gc'
and 'Gi' options, it also prints coplanar and interior points. For Voronoi
diagrams, it prints the coordinates of each Voronoi vertex.
- s
- Print a summary to stderr. If no output options are specified, a summary
goes to stdout. The summary lists the number of input points, the
dimension, the number of vertices in the convex hull, the number of facets
in the convex hull, the number of good facets (if 'Pg'), and statistics.
The last two statistics (if needed) measure the maximum
distance from a point or vertex to a facet. The number in parenthesis
(e.g., 2.1x) is the ratio between the maximum distance and the
worst‐case distance due to merging two simplicial facets.
- Precision
options
- An
- Maximum angle given as a cosine. If the angle between a pair of facet
normals is greater than n, Qhull merges one of the facets into a neighbor.
If 'n' is negative, Qhull tests angles after adding each point to the hull
(pre‐merging). If 'n' is positive, Qhull tests angles after
constructing the hull (post‐merging). Both pre‐ and
post‐merging can be defined.
Option 'C0' or 'C-0' is set if the corresponding 'Cn' or 'C-n'
is not set. If 'Qx' is set, then 'A-n' and 'C-n' are checked after the
hull is constructed and before 'An' and 'Cn' are checked.
- Cn
- Centrum radius. If a centrum is less than n below a neighboring facet,
Qhull merges one of the facets. If 'n' is negative or '-0', Qhull tests
and merges facets after adding each point to the hull. This is called
"pre‐merging". If 'n' is positive, Qhull tests for
convexity after constructing the hull ("post‐merging").
Both pre‐ and post‐merging can be defined.
For 5‐d and higher, 'Qx' should be used instead of
'C-n'. Otherwise, most or all facets may be merged together.
- En
- Maximum roundoff error for distance computations.
- Rn
- Randomly perturb distance computations up to +/- n * max_coord. This
option perturbs every distance, hyperplane, and angle computation. To use
time as the random number seed, use option 'QR-1'.
- Vn
- Minimum distance for a facet to be visible. A facet is visible if the
distance from the point to the facet is greater than 'Vn'.
Without merging, the default value for 'Vn' is the
round‐off error ('En'). With merging, the default value is the
pre‐merge centrum ('C-n') in 2‐d or 3‐d, or three
times that in other dimensions. If the outside width is specified
('Wn'), the maximum, default value for 'Vn' is 'Wn'.
- Un
- Maximum distance below a facet for a point to be coplanar to the facet.
The default value is 'Vn'.
- Wn
- Minimum outside width of the hull. Points are added to the convex hull
only if they are clearly outside of a facet. A point is outside of a facet
if its distance to the facet is greater than 'Wn'. The normal value for
'Wn' is 'En'. If the user specifies pre‐merging and does not set
'Wn', than 'Wn' is set to the premerge 'Cn' and maxcoord*(1-An).
- Additional
input/output formats
- Fa
- Print area for each facet. For Delaunay triangulations, the area is the
area of the triangle. For Voronoi diagrams, the area is the area of the
dual facet. Use 'PAn' for printing the n largest facets, and option 'PFn'
for printing facets larger than 'n'.
The area for non‐simplicial facets is the sum of the
areas for each ridge to the centrum. Vertices far below the facet's
hyperplane are ignored. The reported area may be significantly less than
the actual area.
- FA
- Compute the total area and volume for option 's'. It is an approximation
for non‐simplicial facets (see 'Fa').
- Fc
- Print coplanar points for each facet. The output starts with the number of
facets. Then each facet is printed one per line. Each line is the number
of coplanar points followed by the point ids. Option 'Qi' includes the
interior points. Each coplanar point (interior point) is assigned to the
facet it is furthest above (resp., least below).
- FC
- Print centrums for each facet. The output starts with the dimension
followed by the number of facets. Then each facet centrum is printed, one
per line.
- Fd
- Read input in cdd format with homogeneous points. The input starts with
comments. The first comment is reported in the summary. Data starts after
a "begin" line. The next line is the number of points followed
by the dimension+1 and "real" or "integer". Then the
points are listed with a leading "1" or "1.0". The
data ends with an "end" line.
For halfspaces ('Fd Hn,n,...'), the input format is the same.
Each halfspace starts with its offset. The sign of the offset is the
opposite of Qhull's convention.
- FD
- Print normals ('n', 'Fo', 'Fi') or points ('p') in cdd format. The first
line is the command line that invoked Qhull. Data starts with a
"begin" line. The next line is the number of normals or points
followed by the dimension+1 and "real". Then the normals or
points are listed with the offset before the coefficients. The offset for
points is 1.0. The offset for normals has the opposite sign. The data ends
with an "end" line.
- FF
- Print facets (as in 'f') without printing the ridges.
- Fi
- Print inner planes for each facet. The inner plane is below all
vertices.
- Fi
- Print separating hyperplanes for bounded, inner regions of the Voronoi
diagram. The first line is the number of ridges. Then each hyperplane is
printed, one per line. A line starts with the number of indices and
floats. The first pair lists adjacent input sites, the next d floats are
the normalized coefficients for the hyperplane, and the last float is the
offset. The hyperplane is oriented toward 'QVn' (if defined), or the first
input site of the pair. Use 'Tv' to verify that the hyperplanes are
perpendicular bisectors. Use 'Fo' for unbounded regions, and 'Fv' for the
corresponding Voronoi vertices.
- FI
- Print facet identifiers.
- Fm
- Print number of merges for each facet. At most 511 merges are reported for
a facet. See 'PMn' for printing the facets with the most merges.
- FM
- Output the hull in Maple format. Qhull writes a Maple file for 2‐d
and 3‐d convex hulls and for 2‐d Delaunay triangulations.
Qhull produces a '.mpl' file for displaying with display3d().
- Fn
- Print neighbors for each facet. The output starts with the number of
facets. Then each facet is printed one per line. Each line is the number
of neighbors followed by an index for each neighbor. The indices match the
other facet output formats.
A negative index indicates an unprinted facet due to printing
only good facets ('Pg'). It is the negation of the facet's ID (option
'FI'). For example, negative indices are used for facets "at
infinity" in the Delaunay triangulation.
- FN
- Print vertex neighbors or coplanar facet for each point. The first line is
the number of points. Then each point is printed, one per line. If the
point is coplanar, the line is "1" followed by the facet's ID.
If the point is not a selected vertex, the line is "0".
Otherwise, each line is the number of neighbors followed by the
corresponding facet indices (see 'Fn').
- Fo
- Print outer planes for each facet in the same format as 'n'. The outer
plane is above all points.
- Fo
- Print separating hyperplanes for unbounded, outer regions of the Voronoi
diagram. The first line is the number of ridges. Then each hyperplane is
printed, one per line. A line starts with the number of indices and
floats. The first pair lists adjacent input sites, the next d floats are
the normalized coefficients for the hyperplane, and the last float is the
offset. The hyperplane is oriented toward 'QVn' (if defined), or the first
input site of the pair. Use 'Tv' to verify that the hyperplanes are
perpendicular bisectors. Use 'Fi' for bounded regions, and 'Fv' for the
corresponding Voronoi vertices.
- FO
- List all options to stderr, including the default values. Additional 'FO's
are printed to stdout.
- Fp
- Print points for halfspace intersections (option 'Hn,n,...'). Each
intersection corresponds to a facet of the dual polytope. The
"infinity" point [-10.101,-10.101,...] indicates an unbounded
intersection.
- FP
- For each coplanar point ('Qc') print the point ID of the nearest vertex,
the point ID, the facet ID, and the distance.
- FQ
- Print command used for qhull and input.
- Fs
- Print a summary. The first line consists of the number of integers
("8"), followed by the dimension, the number of points, the
number of vertices, the number of facets, the number of vertices selected
for output, the number of facets selected for output, the number of
coplanar points selected for output, number of simplicial, unmerged facets
in output
The second line consists of the number of reals
("2"), followed by the maxmimum offset to an outer plane and
and minimum offset to an inner plane. Roundoff is included. Later
versions of Qhull may produce additional integers or reals.
- FS
- Print the size of the hull. The first line consists of the number of
integers ("0"). The second line consists of the number of reals
("2"), followed by the total facet area, and the total volume.
Later versions of Qhull may produce additional integers or reals.
The total volume measures the volume of the intersection of
the halfspaces defined by each facet. Both area and volume are
approximations for non‐simplicial facets. See option 'Fa'.
- Ft
- Print a triangulation with added points for non‐simplicial facets.
The first line is the dimension and the second line is the number of
points and the number of facets. The points follow, one per line, then the
facets follow as a list of point indices. With option 'Qz', the points
include the point‐at‐infinity.
- Fv
- Print vertices for each facet. The first line is the number of facets.
Then each facet is printed, one per line. Each line is the number of
vertices followed by the corresponding point ids. Vertices are listed in
the order they were added to the hull (the last one is first).
- Fv
- Print all ridges of a Voronoi diagram. The first line is the number of
ridges. Then each ridge is printed, one per line. A line starts with the
number of indices. The first pair lists adjacent input sites, the
remaining indices list Voronoi vertices. Vertex '0' indicates the
vertex‐at‐infinity (i.e., an unbounded ray). In 3‐d,
the vertices are listed in order. See 'Fi' and 'Fo' for separating
hyperplanes.
- FV
- Print average vertex. The average vertex is a feasible point for halfspace
intersection.
- Fx
- List extreme points (vertices) of the convex hull. The first line is the
number of points. The other lines give the indices of the corresponding
points. The first point is '0'. In 2‐d, the points occur in
counter‐clockwise order; otherwise they occur in input order. For
Delaunay triangulations, 'Fx' lists the extreme points of the input sites.
The points are unordered.
- Geomview
options
- G
- Produce a file for viewing with Geomview. Without other options, Qhull
displays edges in 2‐d, outer planes in 3‐d, and ridges in
4‐d. A ridge can be explicit or implicit. An explicit ridge is a
dim-1 dimensional simplex between two facets. In 4‐d, the explicit
ridges are triangles. When displaying a ridge in 4‐d, Qhull
projects the ridge's vertices to one of its facets' hyperplanes. Use 'Gh'
to project ridges to the intersection of both hyperplanes.
- Ga
- Display all input points as dots.
- Gc
- Display the centrum for each facet in 3‐d. The centrum is defined
by a green radius sitting on a blue plane. The plane corresponds to the
facet's hyperplane. The radius is defined by 'C-n' or 'Cn'.
- GDn
- Drop dimension n in 3‐d or 4‐d. The result is a 2‐d
or 3‐d object.
- Gh
- Display hyperplane intersections in 3‐d and 4‐d. In
3‐d, the intersection is a black line. It lies on two neighboring
hyperplanes (c.f., the blue squares associated with centrums ('Gc')). In
4‐d, the ridges are projected to the intersection of both
hyperplanes.
- Gi
- Display inner planes in 2‐d and 3‐d. The inner plane of a
facet is below all of its vertices. It is parallel to the facet's
hyperplane. The inner plane's color is the opposite (1-r,1-g,1-b) of the
outer plane. Its edges are determined by the vertices.
- Gn
- Do not display inner or outer planes. By default, Geomview displays the
precise plane (no merging) or both inner and output planes (merging).
Under merging, Geomview does not display the inner plane if the the
difference between inner and outer is too small.
- Go
- Display outer planes in 2‐d and 3‐d. The outer plane of a
facet is above all input points. It is parallel to the facet's hyperplane.
Its color is determined by the facet's normal, and its edges are
determined by the vertices.
- Gp
- Display coplanar points and vertices as radii. A radius defines a ball
which corresponds to the imprecision of the point. The imprecision is the
maximum of the roundoff error, the centrum radius, and maxcoord * (1-An).
It is at least 1/20'th of the maximum coordinate, and ignores
post‐merging if pre‐merging is done.
- Gr
- Display ridges in 3‐d. A ridge connects the two vertices that are
shared by neighboring facets. Ridges are always displayed in
4‐d.
- Gt
- A 3‐d Delaunay triangulation looks like a convex hull with interior
facets. Option 'Gt' removes the outside ridges to reveal the outermost
facets. It automatically sets options 'Gr' and 'GDn'.
- Gv
- Display vertices as spheres. The radius of the sphere corresponds to the
imprecision of the data. See 'Gp' for determining the radius.
- Print options
- PAn
- Only the n largest facets are marked good for printing. Unless 'PG' is
set, 'Pg' is automatically set.
- Pdk:n
- Drop facet from output if normal[k] <= n. The option 'Pdk' uses the
default value of 0 for n.
- PDk:n
- Drop facet from output if normal[k] >= n. The option 'PDk' uses the
default value of 0 for n.
- PFn
- Only facets with area at least 'n' are marked good for printing. Unless
'PG' is set, 'Pg' is automatically set.
- Pg
- Print only good facets. A good facet is either visible from a point (the
'QGn' option) or includes a point (the 'QVn' option). It also meets the
requirements of 'Pdk' and 'PDk' options. Option 'Pg' is automatically set
for options 'd', 'PAn', 'PFn', and 'PMn'.
- PG
- Print neighbors of good facets.
- PMn
- Only the n facets with the most merges are marked good for printing.
Unless 'PG' is set, 'Pg' is automatically set.
- Po
- Force output despite precision problems. Verify ('Tv') does not check
coplanar points. Flipped facets are reported and concave facets are
counted. If 'Po' is used, points are not partitioned into flipped facets
and a flipped facet is always visible to a point. Also, if an error occurs
before the completion of Qhull and tracing is not active, 'Po' outputs a
neighborhood of the erroneous facets (if any).
- Pp
- Do not report precision problems.
- Qhull control
options
- Qa
- Allow input with fewer or more points than coordinates
- Qbk:0Bk:0
- Drop dimension k from the input points. This allows the user to take
convex hulls of sub‐dimensional objects. It happens before the
Delaunay and Voronoi transformation.
- QbB
- Scale the input points to fit the unit cube. After scaling, the lower
bound will be -0.5 and the upper bound +0.5 in all dimensions. For
Delaunay and Voronoi diagrams, scaling happens after projection to the
paraboloid. Under precise arithmetic, scaling does not change the topology
of the convex hull.
- Qbb
- Scale the last coordinate to [0, m] where m is the maximum absolute value
of the other coordinates. For Delaunay and Voronoi diagrams, scaling
happens after projection to the paraboloid. It reduces roundoff error for
inputs with integer coordinates. Under precise arithmetic, scaling does
not change the topology of the convex hull.
- Qbk:n
- Scale the k'th coordinate of the input points. After scaling, the lower
bound of the input points will be n. 'Qbk' scales to -0.5.
- QBk:n
- Scale the k'th coordinate of the input points. After scaling, the upper
bound will be n. 'QBk' scales to +0.5.
- Qc
- Keep coplanar points with the nearest facet. Output formats 'p', 'f',
'Gp', 'Fc', 'FN', and 'FP' will print the points.
- Qf
- Partition points to the furthest outside facet.
- Qg
- Only build good facets. With the 'Qg' option, Qhull will only build those
facets that it needs to determine the good facets in the output. See
'QGn', 'QVn', and 'PdD' for defining good facets, and 'Pg' and 'PG' for
printing good facets and their neighbors.
- QGn
- A facet is good (see 'Qg' and 'Pg') if it is visible from point n. If n
< 0, a facet is good if it is not visible from point n. Point n is not
added to the hull (unless 'TCn' or 'TPn'). With rbox, use the 'Pn,m,r'
option to define your point; it will be point 0 (QG0).
- Qi
- Keep interior points with the nearest facet. Output formats 'p', 'f',
'Gp', 'FN', 'FP', and 'Fc' will print the points.
- QJn
- Joggle each input coordinate by adding a random number in [-n,n]. If a
precision error occurs, then qhull increases n and tries again. It does
not increase n beyond a certain value, and it stops after a certain number
of attempts [see user.h]. Option 'QJ' selects a default value for n. The
output will be simplicial. For Delaunay triangulations, 'QJn' sets 'Qbb'
to scale the last coordinate (not if 'Qbk:n' or 'QBk:n' is set).
´QJn' is deprecated for Voronoi diagrams. See also 'Qt'.
- Qm
- Only process points that would otherwise increase max_outside. Other
points are treated as coplanar or interior points.
- Qr
- Process random outside points instead of furthest ones. This makes Qhull
equivalent to the randomized incremental algorithms. CPU time is not
reported since the randomization is inefficient.
- QRn
- Randomly rotate the input points. If n=0, use time as the random number
seed. If n>0, use n as the random number seed. If n=-1, don't rotate
but use time as the random number seed. For Delaunay triangulations ('d'
and 'v'), rotate about the last axis.
- Qs
- Search all points for the initial simplex.
- Qt
- Triangulated output. Triangulate all non‐simplicial facets.
´Qt' is deprecated for Voronoi diagrams. See also 'Qt'.
- Qv
- Test vertex neighbors for convexity after post‐merging. To use the
'Qv' option, you also need to set a merge option (e.g., 'Qx' or
'C-0').
- QVn
- A good facet (see 'Qg' and 'Pg') includes point n. If n<0, then a good
facet does not include point n. The point is either in the initial simplex
or it is the first point added to the hull. Option 'QVn' may not be used
with merging.
- Qw
- Allow option warnings. Otherwise Qhull returns an error after most option
warnings
- Qx
- Perform exact merges while building the hull. The "exact" merges
are merging a point into a coplanar facet (defined by 'Vn', 'Un', and
'C-n'), merging concave facets, merging duplicate ridges, and merging
flipped facets. Coplanar merges and angle coplanar merges ('A-n') are not
performed. Concavity testing is delayed until a merge occurs.
After the hull is built, all coplanar merges are performed
(defined by 'C-n' and 'A-n'), then post‐merges are performed
(defined by 'Cn' and 'An').
- Qz
- Add a point "at infinity" that is above the paraboloid for
Delaunay triangulations and Voronoi diagrams. This reduces precision
problems and allows the triangulation of cospherical points.
- Qhull experiments and
speedups
- Q0
- Turn off pre‐merging as a default option. With 'Q0'/'Qx' and
without explicit pre‐merge options, Qhull ignores precision issues
while constructing the convex hull. This may lead to precision errors. If
so, a descriptive warning is generated.
- Q1
- With 'Q1', Qhull merges by mergetype/angle instead of
mergetype/distance.
- Q2
- With 'Q2', Qhull merges all facets at once instead of using independent
sets of merges and then retesting.
- Q3
- With 'Q3', Qhull does not remove redundant vertices.
- Q4
- With 'Q4', Qhull avoids merges of an old facet into a new facet.
- Q5
- With 'Q5', Qhull does not correct outer planes at the end. The maximum
outer plane is used instead.
- Q6
- With 'Q6', Qhull does not pre‐merge concave or coplanar
facets.
- Q7
- With 'Q7', Qhull processes facets in depth‐first order instead of
breadth‐first order.
- Q8
- With 'Q8' and merging, Qhull does not retain near‐interior points
for adjusting outer planes. 'Qc' will probably retain all points that
adjust outer planes.
- Q9
- With 'Q9', Qhull processes the furthest of all outside sets at each
iteration.
- Q10
- With 'Q10', Qhull does not use special processing for narrow
distributions.
- Q11
- With 'Q11', Qhull copies normals and recompute centrums for tricoplanar
facets.
- Q12
- With 'Q12', Qhull allows wide facets and wide dupridge.
- Q14
- With 'Q14', Qhull merges pinched vertices that create a dupridge.
- Q15
- With 'Q15', Qhull checks for duplicate ridges with the same vertices.
- Trace options
- Tn
- Trace at level n. Qhull includes full execution tracing. 'T-1' traces
events. 'T1' traces the overall execution of the program. 'T2' and 'T3'
trace overall execution and geometric and topological events. 'T4' traces
the algorithm. 'T5' includes information about memory allocation and
Gaussian elimination.
- Ta
- Annotate output with codes that identify the corresponding qh_fprintf()
statement.
- TAn
- Stop Qhull after adding n vertices.
- Tc
- Check frequently during execution. This will catch most inconsistency
errors.
- TCn
- Stop Qhull after building the cone of new facets for point n. The output
for 'f' includes the cone and the old hull. See also 'TVn'.
- Tf
- Flush output after each qh_fprintf. Use 'Tf' for debugging segfaults. See
'Tz' for redirecting stderr.
- TFn
- Report progress whenever more than n facets are created During
post‐merging, 'TFn' reports progress after more than n/2
merges.
- TI file
- Input data from 'file'. The filename may not include spaces or
quotes.
- TMn
- Turn on tracing at n'th merge.
- TO file
- Output results to 'file'. The name may be enclosed in single quotes.
- TPn
- Turn on tracing when point n is added to the hull. Trace partitions of
point n. If used with TWn, turn off tracing after adding point n to the
hull.
- TP-1
- Turn on tracing after qh_buildhull and qh_postmerge.
- TRn
- Rerun qhull n times. Usually used with 'QJn' to determine the probability
that a given joggle will fail.
- Ts
- Collect statistics and print to stderr at the end of execution.
- Tv
- Verify the convex hull. This checks the topological structure, facet
convexity, and point inclusion. If precision problems occurred, facet
convexity is tested whether or not 'Tv' is selected. Option 'Tv' does not
check point inclusion if forcing output with 'Po', or if 'Q5' is set.
For point inclusion testing, Qhull verifies that all points
are below all outer planes (facet->maxoutside). Point inclusion is
exhaustive if merging or if the facet‐point product is small
enough; otherwise Qhull verifies each point with a directed search
(qh_findbest).
Point inclusion testing occurs after producing output. It
prints a message to stderr unless option 'Pp' is used. This allows the
user to interrupt Qhull without changing the output.
- TVn
- Stop Qhull after adding point n. If n < 0, stop Qhull before adding
point n. Output shows the hull at this time. See also 'TCn'
- TWn
- Trace merge facets when the width is greater than n.
- Tz
- Redirect stderr to stdout. See 'Tf' for flushing writes.
Please report bugs to Brad Barber at qhull_bug@qhull.org.
If Qhull does not compile, it is due to an incompatibility between
your system and ours. The first thing to check is that your compiler is ANSI
standard. If it is, check the man page for the best options, or find someone
to help you. If you locate the cause of your problem, please send email
since it might help others.
If Qhull compiles but crashes on the test case (rbox D4), there's
still incompatibility between your system and ours. Typically it's been due
to mem.c and memory alignment. You can use qh_NOmem in mem.h to turn off
memory management. Please let us know if you figure out how to fix these
problems.
If you do find a problem, try to simplify it before reporting the
error. Try different size inputs to locate the smallest one that causes an
error. You're welcome to hunt through the code using the execution trace as
a guide. This is especially true if you're incorporating Qhull into your own
program.
When you do report an error, please attach a data set to the end
of your message. This allows us to see the error for ourselves. Qhull is
maintained part‐time.
Please send correspondence to qhull@qhull.org and report bugs to
qhull_bug@qhull.org. Let us know how you use Qhull. If you mention it in a
paper, please send the reference and an abstract.
If you would like to get Qhull announcements (e.g., a new version)
and news (any bugs that get fixed, etc.), let us know and we will add you to
our mailing list. If you would like to communicate with other Qhull users,
we will add you to the qhull_users alias. For Internet news about geometric
algorithms and convex hulls, look at comp.graphics.algorithms and
sci.math.num-analysis
rbox(1)
Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The
Quickhull Algorithm for Convex Hulls," ACM Trans. on Mathematical
Software, 22(4):469–483, Dec. 1996.
http://portal.acm.org/citation.cfm?doid=235815.235821
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405
Clarkson, K.L., K. Mehlhorn, and R. Seidel, "Four results on
randomized incremental construction," Computational Geometry: Theory
and Applications, vol. 3, p. 185–211, 1993.
Preparata, F. and M. Shamos, Computational Geometry,
Springer‐Verlag, New York, 1985.
C. Bradford Barber Hannu Huhdanpaa
bradb@shore.net hannu@qhull.org
.fi
A special thanks to Albert Marden, Victor Milenkovic, the Geometry
Center, Harvard University, and Endocardial Solutions, Inc. for supporting
this work.
Qhull 1.0 and 2.0 were developed under National Science Foundation
grants NSF/DMS‐8920161 and NSF‐CCR‐91‐15793
750‐7504. David Dobkin guided the original work at Princeton
University. If you find it useful, please let us know.
The Geometry Center is supported by grant DMS‐8920161 from
the National Science Foundation, by grant
DOE/DE‐FG02‐92ER25137 from the Department of Energy, by the
University of Minnesota, and by Minnesota Technology, Inc.
Qhull is available from http://www.qhull.org