QTLtools - A complete tool set for molecular QTL discovery and
analysis
QTLtools [MODE] [OPTIONS]
QTLtools is a complete tool set for molecular QTL discovery and
analysis that is fast, user and cluster friendly. QTLtools performs multiple
key tasks such as checking the quality of the sequence data, checking that
sequence and genotype data match, quantifying and stratifying individuals
using molecular phenotypes, discovering proximal or distal molQTLs and
integrating them with functional annotations or GWAS data, and analyzing
allele specific expression. It utilizes HTSlib
<http://www.htslib.org/> to quickly and efficiently handle common
genomics files types like VCF, BCF, BAM, SAM, CRAM, BED, and GTF, and the
Eigen C++ library <http://eigen.tuxfamily.org/> for fast linear
algebra.
- bamstat
- QTLtools bamstat --bam [in.sam|in.bam|in.cram]
--bed annotation.bed.gz --out output.txt
[OPTIONS]
Calculate basic QC metrics for BAM/SAM.
- mbv
- QTLtools mbv --bam [in.sam|in.bam|in.cram]
--vcf [in.vcf|in.vcf.gz|in.bcf] --out
output.txt [OPTIONS]
Match BAM to VCF
- pca
- QTLtools pca --vcf [in.vcf|in.vcf.gz|in.bcf]
| --bed in.bed.gz --out output.txt
[OPTIONS]
Calculate principal components for a BED/VCF/BCF/CRAM
file.
- correct
- QTLtools correct --vcf
[in.vcf|in.vcf.gz|in.bcf] | --bed
in.bed.gz --cov covariates.txt | --normal
--out output.txt [OPTIONS]
Covariate correction of a BED or a VCF file.
- cis
- QTLtools cis --vcf
[in.vcf|in.vcf.gz|in.bcf|in.bed.gz]
--bed quantifications.bed.gz [--nominal float
| --permute integer | --mapping in.txt]
--out output.txt [OPTIONS]
cis QTL analysis.
- trans
- QTLtools trans --vcf
[in.vcf|in.vcf.gz|in.bcf|in.bed.gz]
--bed quantifications.bed.gz [--nominal |
--permute | --sample integer | --adjust
in.txt] --out output.txt [OPTIONS]
trans QTL analysis.
- fenrich
- QTLtools fenrich --qtl significanty_genes.bed --tss
gene_tss.bed --bed TFs.encode.bed.gz --out
output.txt [OPTIONS]
Functional enrichment for QTLs.
- fdensity
- QTLtools fdensity --qtl significanty_genes.bed --bed
TFs.encode.bed.gz --out output.txt [OPTIONS]
Functional density around QTLs.
- genrich
- QTLtools genrich --qtl significanty_genes.bed --tss
gene_tss.bed --vcf 1000kg.vcf --gwas
gwas_hits.bed --out output.txt [OPTIONS]
GWAS enrichment for QTLs. This mode is deprecated and not
supported, use rtc instead.
- rtc
- QTLtools rtc --vcf
[in.vcf|in.vcf.gz|in.bcf|in.bed.gz]
--bed quantifications.bed.gz --hotspots
hotspots_b37_hg19.bed [--gwas-cis | --gwas-trans |
--mergeQTL-cis | --mergeQTL-trans] variants_external.txt
qtls_in_this_dataset.txt --out output.txt
[OPTIONS]
Regulatory Trait Concordance score analysis to test if two
colocalizing variants are due to the same functional effect.
- rtc-union
- QTLtools rtc-union --vcf
[in.vcf|in.vcf.gz|in.bcf|in.bed.gz] ...
--bed quantifications.bed.gz ... --hotspots
hotspots_b37_hg19.bed --results qtl_results_files.txt
... [OPTIONS]
Find the union of QTLs from independent datasets. If there was
a QTL in a given recombination interval in one dataset, then find the
best QTL (may or may not be genome-wide significant) in the same
recombination interval in all other datasets.
- QTLtools extract [--vcf --bed --cov] relevant_file
--out output_prefix [OPTIONS]
Data extraction mode. Extract all the data from the provided
files into one flat file.
- quan
- QTLtools quan --bam [in.sam|in.bam|in.cram]
--gtf gene_annotation.gtf --out-prefix output
[OPTIONS]
Quantify gene and exon expression from RNAseq.
- ase
- QTLtools ase --bam [in.sam|in.bam|in.cram]
--vcf [in.vcf|in.vcf.gz|in.bcf] --ind
sample_name_in_vcf --mapq integer --out
output.txt [OPTIONS]
Measure allele specific expression from RNAseq at transcribed
heterozygous SNPs
- rep
- QTLtools rep --bed quantifications.bed.gz --vcf
[in.vcf|in.vcf.gz|in.bcf] --qtl
qtls_external.txt --out output.txt [OPTIONS]
Replicate QTL associations in an independent dataset
- gwas
- QTLtools gwas --vcf
[in.vcf|in.vcf.gz|in.bcf|in.bed.gz]
--bed quantifications.bed.gz --out output.txt
[OPTIONS]
GWAS tests. Correlate all genotypes with all phenotypes.
QTLtools can read gzip, bgzip, and bzip2 files, and can output
gzip and bzip2 files. This is dependent on the input and output files'
extension. E.g --out output.txt.gz will write a gzipped file.
The following are common options that are used in all of the
modes. Some of these will not apply to certain modes.
- --help
- Produces a description of options for a given mode.
- --seed
integer
- Random seed for analyses that utilizes randomness. Useful for generating
replicable results. Default=15112011.
- --log
file
- Dump screen output to this file.
- --silent
- Disable screen output.
- --exclude-samples
file
- List of samples to exclude. One sample name per line.
- --include-samples
file
- List of samples to include. One sample name per line.
- --exclude-sites
file
- List of variants to exclude. One variant ID per line.
- --include-sites
file
- List of variants to include. One variant ID per line.
- --exclude-positions
file
- List of positions to exclude from genotypes. One chr position per line
(separated by a space).
- --include-positions
file
- List of positions to include from genotypes. One chr position per line
(separated by a space).
- --exclude-phenotypes
file
- List of phenotypes to exclude. One phenotype ID per line.
- --include-phenotypes
file
- List of phenotypes to include. One phenotype ID per line.
- --exclude-covariates
file
- List of covariates to exclude. One covariate name per line.
- --include-covariates
file
- List of covariates to include. One covariate name per line.
- .bcf|.vcf|.vcf.gz
- These files are used for genotype data. The official VCF specification is
described at <https://samtools.github.io/hts-specs/VCFv4.2.pdf>. The
VCF/BCF files used with QTLtools must satisfy this spec's requirements.
BCF files must be indexed with bcftools index in.bcf
<http://samtools.github.io/bcftools/bcftools.html>. VCF files should
be compressed by bgzip <http://www.htslib.org/doc/bgzip.html>
and indexed with tabix -p vcf in.vcf.gz
<http://www.htslib.org/doc/tabix.html>.
- .bed|.bed.gz
- These files are used for phenotype data, and in certain modes they can
also be used with the --vcf option, which can be used to correlate two
molecular phenotypes. The format used for QTLtools is a custom UCSC BED
format <https://genome.ucsc.edu/FAQ/FAQformat.html#format1>, which
has 6 annotation columns followed by sample columns. The header line must
exist, and must begin with a # and columns must be tab separated. THIS
IS A DIFFERENT FILE FORMAT THAN THE ONE USED FOR FASTQTL, THUS FASTQTL BED
FILES ARE INCOMPATIBLE WITH QTLTOOLS. Phenotype BED files must be
compressed by bgzip <http://www.htslib.org/doc/bgzip.html>
and indexed with tabix -p bed in.bed.gz
<http://www.htslib.org/doc/tabix.html>. Missing values must be
coded as NA. Following is an example BED file:
#chr start end pid gid strand sample1 sample2
1 9999 10000 exon1 gene1 + 15 234
1 9999 10000 exon2 gene1 + 11 134
1 19999 20000 exon1 gene2 - 154 284
1 19999 20000 exon2 gene2 - 112 301
BED file's annotation columns' descriptions:
1 |
Phenotype chromosome [string] |
2 |
Start position of the phenotype [integer,
0-based] |
3 |
End position of the phenotype [integer, 1-based] |
4 |
Phenotype ID [string] |
5 |
Phenotype group ID or any type of info about the phenotype
[string] |
6 |
Phenotype strand [+/-] |
- .bam|.sam|.cram
- These files are used for sequence data. The official SAM specification is
described at <https://samtools.github.io/hts-specs/SAMv1.pdf>. The
SAM/BAM/CRAM files used with QTLtools must satisfy this spec's
requirements. SAM/BAM/CRAM files must be indexed with samtools index
in.bam <http://www.htslib.org/doc/samtools.html>.
- .gtf
- These files are used for gene annotation. The file specification is
described at <https://www.ensembl.org/info/website/upload/gff.html>.
The GTF files used must comply with this spec, and should have the
gene_id, transcript_id, gene_name, gene_type, and trnascript_type
attributes. We recommend using gene annotations from GENCODE
<https://www.gencodegenes.org/>.
- covariate
files
- The covariate file contains the covariate data in simple text format.
The missing values should be encoded as NA. Both quantitative and
qualitative covariates are supported. Quantitative covariates are assumed
when only numeric values are provided. Qualitative covariates are assumed
when only non-numeric values are provided. In practice, qualitative
covariates with F factors are converted in F-1 binary covariates.
Following is an example a covariate file:
id sample1 sample2 sample3
PC1 -0.02 0.14 0.16
PC2 0.01 0.11 0.10
PC3 0.03 0.05 0.07
COV A B C
- include/exclude
files
- The various --{include,exclude}-{sites,samples,phenotypes,covariates}
options require a simple text file which lists the IDs of the desired
type, one ID per line. The include options will result in running the
analyses only in this subset of IDs, whereas exclude options will remove
these IDs from the analyses. The IDs for --{include,exclude}-sites refer
to the 3rd column in VCF/BCF files, --{include,exclude}-covariates refer
to the 1st column in COV files, --{include,exclude}-phenotyps refer to the
4th column in BED files and when --grp-best option is used to the 5th
column. The --include-positions and --exclude-positions options require a
text file which lists the chromosomes and positions (separated by a space)
of genotypes to be excluded or included. One position per line.
- o
- BED files' start position is 0-based, whereas the end position
is 1-based. Positions in all other files used in QTLtools are
1-based. All positions provided as option arguments and filters,
even the ones referring to BED files, must be 1-based. 1-based
means the first base of the sequence has the position 1, whereas in
0-based the first position is 0.
- o
- Make sure the chromosome names are the same across all files. If some
files have e.g. chr1 and another has 1 as a chromosome name then these
will be considered different chromosomes.
- o
- BED files used for FastQTL <http://fastqtl.sourceforge.net/> are not
directly compatible with QTLtools. To convert a FastQTL BED file to the
format used in QTLtools you need to add 2 columns after the 4th
column.
- o
- The quan mode in version 1.2 and above is not compatible with the
quantifications generated by the previous versions. This due to bug fixes
and slight adjustments to the way we quantify. Do not mix
quantifications generated by earlier versions of QTLtools with
quantifications from version 1.2 and above, as this will create a bias
in your dataset.
- o
- Make sure you index all your genotype, phenotype, and sequence files.
- o
- Use BCF and BAM files for the best performance.
exons.50percent.chr22.bed.gz <http://jungle.unige.ch/QTLtools_examples/exons.50percent.chr22.bed.gz>
exons.50percent.chr22.bed.gz.tbi <http://jungle.unige.ch/QTLtools_examples/exons.50percent.chr22.bed.gz.tbi>
gencode.v19.annotation.chr22.gtf.gz <http://jungle.unige.ch/QTLtools_examples/gencode.v19.annotation.chr22.gtf.gz>
gencode.v19.exon.chr22.bed.gz <http://jungle.unige.ch/QTLtools_examples/gencode.v19.exon.chr22.bed.gz>
genes.50percent.chr22.bed.gz <http://jungle.unige.ch/QTLtools_examples/genes.50percent.chr22.bed.gz>
genes.50percent.chr22.bed.gz.tbi <http://jungle.unige.ch/QTLtools_examples/genes.50percent.chr22.bed.gz.tbi>
genes.covariates.pc50.txt.gz <http://jungle.unige.ch/QTLtools_examples/genes.covariates.pc50.txt.gz>
genes.simulated.chr22.bed.gz <http://jungle.unige.ch/QTLtools_examples/genes.simulated.chr22.bed.gz>
genes.simulated.chr22.bed.gz.tbi <http://jungle.unige.ch/QTLtools_examples/genes.simulated.chr22.bed.gz.tbi>
genotypes.chr22.vcf.gz <http://jungle.unige.ch/QTLtools_examples/genotypes.chr22.vcf.gz>
genotypes.chr22.vcf.gz.tbi <http://jungle.unige.ch/QTLtools_examples/genotypes.chr22.vcf.gz.tbi>
GWAS.b37.txt <http://jungle.unige.ch/QTLtools_examples/GWAS.b37.txt>
HG00381.chr22.bam <http://jungle.unige.ch/QTLtools_examples/HG00381.chr22.bam>
HG00381.chr22.bam.bai <http://jungle.unige.ch/QTLtools_examples/HG00381.chr22.bam.bai>
hotspots_b37_hg19.bed <http://jungle.unige.ch/QTLtools_examples/hotspots_b37_hg19.bed>
results.genes.full.txt.gz <http://jungle.unige.ch/QTLtools_examples/results.genes.full.txt.gz>
TFs.encode.bed.gz <http://jungle.unige.ch/QTLtools_examples/TFs.encode.bed.gz>
QTLtools-bamstat(1), QTLtools-mbv(1),
QTLtools-pca(1), QTLtools-correct(1), QTLtools-cis(1),
QTLtools-trans(1), QTLtools-fenrich(1),
QTLtools-fdensity(1), QTLtools-rtc(1),
QTLtools-rtc-union(1), QTLtools-extract(1),
QTLtools-quan(1), QTLtools-ase(1), QTLtools-rep(1),
QTLtools-gwas(1)
QTLtools website: <https://qtltools.github.io/qtltools>
- o
- Versions up to and including 1.2, suffer from a bug in reading missing
genotypes in VCF/BCF files. This bug affects variants with a DS field in
their genotype's FORMAT and have a missing genotype (DS field is .) in one
of the samples, in which case genotypes for all the samples are set to
missing, effectively removing this variant from the analyses. Affected
modes: cis, correct, gwas, pca, rep, trans, rtc-union
Please submit bugs to
<https://github.com/qtltools/qtltools>
Delaneau O., Ongen H., Brown A. A., et al. A complete tool set for
molecular QTL discovery and analysis. Nat Commun 8, 15452
(2017). <https://doi.org/10.1038/ncomms15452>
Ongen H, Brown A. A., Delaneau O., et al. Estimating the causal
tissues for complex traits and diseases. Nat Genet.
2017;49(12):1676-1683. doi:10.1038/ng.3981
<https://doi.org/10.1038/ng.3981>
Fort A., Panousis N. I., Garieri M., et al. MBV: a method to solve
sample mislabeling and detect technical bias in large combined genotype and
sequencing assay datasets, Bioinformatics 33(12), 1895 2017.
<https://doi.org/10.1093/bioinformatics/btx074>
Olivier Delaneau (olivier.delaneau@gmail.com), Halit Ongen
(halitongen@gmail.com)