DOKK / manpages / debian 12 / tpm2-tools / tpm2_changeauth.1.en
tpm2_changeauth(1) General Commands Manual tpm2_changeauth(1)

tpm2_changeauth - Changes authorization values for TPM objects.

tpm2_changeauth [OPTIONS] [ARGUMENT]

tpm2_changeauth - Configures authorization values for the various hierarchies, NV indices, transient and persistent objects.

Note: For non-permanent objects (Transient objects and Persistent objects), copies of the private information (files or persistent handles) created prior to changing auth are not invalidated.

Passwords should follow the “password authorization formatting standards”, see section “Authorization Formatting”.

-c, --object-context=OBJECT:

The key context object to be used for the operation.

-p, --object-auth=AUTH:

The old authorization value for the TPM object specified with -c.

-C, --parent-context=OBJECT:

The parent object. This is required if the object for the operation is a transient or persistent object.

-r, --private=FILE: The output file which contains the new sensitive portion of the object whose auth was being changed. # Protection Details

Objects that can move outside of TPM need to be protected (confidentiality and integrity). For instance, transient objects require that TPM protected data (key or seal material) be stored outside of the TPM. This is seen in tools like tpm2_create(1), where the -r option outputs this protected data. This blob contains the sensitive portions of the object. The sensitive portions of the object are protected by the parent object, using the parent’s symmetric encryption details to encrypt the sensitive data and HMAC it.

In-depth details can be found in sections 23 of:

https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf

Notably Figure 20, is relevant, even though it’s specifically referring to duplication blobs, the process is identical.

If the output is from tpm2_duplicate(1), the output will be slightly different, as described fully in section 23.

--cphash=FILE

File path to record the hash of the command parameters. This is commonly termed as cpHash. NOTE: When this option is selected, The tool will not actually execute the command, it simply returns a cpHash, unless rphash is also required.

--rphash=FILE

File path to record the hash of the response parameters. This is commonly termed as rpHash.

-S, --session=FILE:

The session created using tpm2_startauthsession. This can be used to specify an auxiliary session for auditing and or encryption/decryption of the parameters.

ARGUMENT the command line argument specifies the AUTH to be set for the object specified with -c.

The type of a context object, whether it is a handle or file name, is determined according to the following logic in-order:

If the argument is a file path, then the file is loaded as a restored TPM transient object.
If the argument is a prefix match on one of:
owner: the owner hierarchy
platform: the platform hierarchy
endorsement: the endorsement hierarchy
lockout: the lockout control persistent object
If the argument argument can be loaded as a number it will be treat as a handle, e.g. 0x81010013 and used directly._OBJECT_.

Authorization for use of an object in TPM2.0 can come in 3 different forms: 1. Password 2. HMAC 3. Sessions

NOTE: “Authorizations default to the EMPTY PASSWORD when not specified”.

Passwords are interpreted in the following forms below using prefix identifiers.

Note: By default passwords are assumed to be in the string form when they do not have a prefix.

A string password, specified by prefix “str:” or it’s absence (raw string without prefix) is not interpreted, and is directly used for authorization.

foobar
str:foobar
    

A hex-string password, specified by prefix “hex:” is converted from a hexidecimal form into a byte array form, thus allowing passwords with non-printable and/or terminal un-friendly characters.

hex:1122334455667788
    

A file based password, specified be prefix “file:” should be the path of a file containing the password to be read by the tool or a “-” to use stdin. Storing passwords in files prevents information leakage, passwords passed as options can be read from the process list or common shell history features.

# to use stdin and be prompted
file:-
# to use a file from a path
file:path/to/password/file
# to echo a password via stdin:
echo foobar | tpm2_tool -p file:-
# to use a bash here-string via stdin:
tpm2_tool -p file:- <<< foobar
    

When using a policy session to authorize the use of an object, prefix the option argument with the session keyword. Then indicate a path to a session file that was created with tpm2_startauthsession(1). Optionally, if the session requires an auth value to be sent with the session handle (eg policy password), then append a + and a string as described in the Passwords section.

To use a session context file called session.ctx.

session:session.ctx
    

To use a session context file called session.ctx AND send the authvalue mypassword.

session:session.ctx+mypassword
    

To use a session context file called session.ctx AND send the HEX authvalue 0x11223344.

session:session.ctx+hex:11223344
    

You can satisfy a PCR policy using the “pcr:” prefix and the PCR minilanguage. The PCR minilanguage is as follows: <pcr-spec>=<raw-pcr-file>

The PCR spec is documented in in the section “PCR bank specifiers”.

The raw-pcr-file is an optional argument that contains the output of the raw PCR contents as returned by tpm2_pcrread(1).

PCR bank specifiers

To satisfy a PCR policy of sha256 on banks 0, 1, 2 and 3 use a specifier of:

pcr:sha256:0,1,2,3
    

specifying AUTH.

This collection of options are common to many programs and provide information that many users may expect.

-h, --help=[man|no-man]: Display the tools manpage. By default, it attempts to invoke the manpager for the tool, however, on failure will output a short tool summary. This is the same behavior if the “man” option argument is specified, however if explicit “man” is requested, the tool will provide errors from man on stderr. If the “no-man” option if specified, or the manpager fails, the short options will be output to stdout.

To successfully use the manpages feature requires the manpages to be installed or on MANPATH, See man(1) for more details.

-v, --version: Display version information for this tool, supported tctis and exit.
-V, --verbose: Increase the information that the tool prints to the console during its execution. When using this option the file and line number are printed.
-Q, --quiet: Silence normal tool output to stdout.
-Z, --enable-errata: Enable the application of errata fixups. Useful if an errata fixup needs to be applied to commands sent to the TPM. Defining the environment TPM2TOOLS_ENABLE_ERRATA is equivalent. information many users may expect.

The TCTI or “Transmission Interface” is the communication mechanism with the TPM. TCTIs can be changed for communication with TPMs across different mediums.

To control the TCTI, the tools respect:

1.
The command line option -T or --tcti
2.
The environment variable: TPM2TOOLS_TCTI.

Note: The command line option always overrides the environment variable.

The current known TCTIs are:

tabrmd - The resource manager, called tabrmd (https://github.com/tpm2-software/tpm2-abrmd). Note that tabrmd and abrmd as a tcti name are synonymous.
mssim - Typically used for communicating to the TPM software simulator.
device - Used when talking directly to a TPM device file.
none - Do not initalize a connection with the TPM. Some tools allow for off-tpm options and thus support not using a TCTI. Tools that do not support it will error when attempted to be used without a TCTI connection. Does not support ANY options and MUST BE presented as the exact text of “none”.

The arguments to either the command line option or the environment variable are in the form:

<tcti-name>:<tcti-option-config>

Specifying an empty string for either the <tcti-name> or <tcti-option-config> results in the default being used for that portion respectively.

When a TCTI is not specified, the default TCTI is searched for using dlopen(3) semantics. The tools will search for tabrmd, device and mssim TCTIs IN THAT ORDER and USE THE FIRST ONE FOUND. You can query what TCTI will be chosen as the default by using the -v option to print the version information. The “default-tcti” key-value pair will indicate which of the aforementioned TCTIs is the default.

Any TCTI that implements the dynamic TCTI interface can be loaded. The tools internally use dlopen(3), and the raw tcti-name value is used for the lookup. Thus, this could be a path to the shared library, or a library name as understood by dlopen(3) semantics.

This collection of options are used to configure the various known TCTI modules available:

device: For the device TCTI, the TPM character device file for use by the device TCTI can be specified. The default is /dev/tpm0.

Example: -T device:/dev/tpm0 or export TPM2TOOLS_TCTI=“device:/dev/tpm0”

mssim: For the mssim TCTI, the domain name or IP address and port number used by the simulator can be specified. The default are 127.0.0.1 and 2321.

Example: -T mssim:host=localhost,port=2321 or export TPM2TOOLS_TCTI=“mssim:host=localhost,port=2321”

abrmd: For the abrmd TCTI, the configuration string format is a series of simple key value pairs separated by a `,' character. Each key and value string are separated by a `=' character.
TCTI abrmd supports two keys:
1.
`bus_name' : The name of the tabrmd service on the bus (a string).
2.
`bus_type' : The type of the dbus instance (a string) limited to `session' and `system'.

Specify the tabrmd tcti name and a config string of bus_name=com.example.FooBar:

\--tcti=tabrmd:bus_name=com.example.FooBar
    

Specify the default (abrmd) tcti and a config string of bus_type=session:

\--tcti:bus_type=session
    

NOTE: abrmd and tabrmd are synonymous. the various known TCTI modules.

tpm2_changeauth -c owner newpass
tpm2_changeauth -c endorsement newpass
tpm2_changeauth -c lockout newpass
    

tpm2_changeauth -c o -p newpass newerpass
tpm2_changeauth -c e -p newpass newerpass
tpm2_changeauth -c l -p newpass newerpass
    

tpm2_changeauth -c o -p oldpass
    

tpm2_createprimary -Q -C o -c prim.ctx
tpm2_create -Q -g sha256 -G aes -u key.pub -r key.priv -C prim.ctx
tpm2_load -C prim.ctx -u key.pub -r key.priv -n key.name -c key.ctx
tpm2_changeauth -c key.ctx -C prim.ctx -r key.priv newkeyauth
    

Requires Extended Session Support.

tpm2_startauthsession -S session.ctx
tpm2_policycommandcode -S session.ctx -L policy.nvchange TPM2_CC_NV_ChangeAuth
tpm2_flushcontext session.ctx
NVIndex=0x1500015
tpm2_nvdefine   $NVIndex -C o -s 32 -a "authread|authwrite" -L policy.nvchange
tpm2_startauthsession \--policy-session -S session.ctx
tpm2_policycommandcode -S session.ctx -L policy.nvchange TPM2_CC_NV_ChangeAuth
tpm2_changeauth -p session:session.ctx -c $NVIndex newindexauth
    

Tools can return any of the following codes:

0 - Success.
1 - General non-specific error.
2 - Options handling error.
3 - Authentication error.
4 - TCTI related error.
5 - Non supported scheme. Applicable to tpm2_testparams.

Github Issues (https://github.com/tpm2-software/tpm2-tools/issues)

See the Mailing List (https://lists.linuxfoundation.org/mailman/listinfo/tpm2)

tpm2-tools