DOKK / manpages / debian 13 / liblapack-doc / la_porcond.3.en
la_porcond(3) LAPACK la_porcond(3)

la_porcond - la_porcond: Skeel condition number estimate


real function cla_porcond_c (uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)
CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices. real function cla_porcond_x (uplo, n, a, lda, af, ldaf, x, info, work, rwork)
CLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices. double precision function dla_porcond (uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)
DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix. real function sla_porcond (uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)
SLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix. double precision function zla_porcond_c (uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)
ZLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices. double precision function zla_porcond_x (uplo, n, a, lda, af, ldaf, x, info, work, rwork)
ZLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.

CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices.

Purpose:


CLA_PORCOND_C Computes the infinity norm condition number of
op(A) * inv(diag(C)) where C is a REAL vector

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by CPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

C


C is REAL array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).

CAPPLY


CAPPLY is LOGICAL
If .TRUE. then access the vector C in the formula above.

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is COMPLEX array, dimension (2*N).
Workspace.

RWORK


RWORK is REAL array, dimension (N).
Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

CLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.

Purpose:


CLA_PORCOND_X Computes the infinity norm condition number of
op(A) * diag(X) where X is a COMPLEX vector.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by CPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

X


X is COMPLEX array, dimension (N)
The vector X in the formula op(A) * diag(X).

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is COMPLEX array, dimension (2*N).
Workspace.

RWORK


RWORK is REAL array, dimension (N).
Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.

Purpose:


DLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C)
where op2 is determined by CMODE as follows
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = -1 op2(C) = inv(C)
The Skeel condition number cond(A) = norminf( |inv(A)||A| )
is computed by computing scaling factors R such that
diag(R)*A*op2(C) is row equilibrated and computing the standard
infinity-norm condition number.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

CMODE


CMODE is INTEGER
Determines op2(C) in the formula op(A) * op2(C) as follows:
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = -1 op2(C) = inv(C)

C


C is DOUBLE PRECISION array, dimension (N)
The vector C in the formula op(A) * op2(C).

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is DOUBLE PRECISION array, dimension (3*N).
Workspace.

IWORK


IWORK is INTEGER array, dimension (N).
Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

SLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.

Purpose:


SLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C)
where op2 is determined by CMODE as follows
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = -1 op2(C) = inv(C)
The Skeel condition number cond(A) = norminf( |inv(A)||A| )
is computed by computing scaling factors R such that
diag(R)*A*op2(C) is row equilibrated and computing the standard
infinity-norm condition number.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is REAL array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

CMODE


CMODE is INTEGER
Determines op2(C) in the formula op(A) * op2(C) as follows:
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = -1 op2(C) = inv(C)

C


C is REAL array, dimension (N)
The vector C in the formula op(A) * op2(C).

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is REAL array, dimension (3*N).
Workspace.

IWORK


IWORK is INTEGER array, dimension (N).
Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices.

Purpose:


ZLA_PORCOND_C Computes the infinity norm condition number of
op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by ZPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

C


C is DOUBLE PRECISION array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).

CAPPLY


CAPPLY is LOGICAL
If .TRUE. then access the vector C in the formula above.

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is COMPLEX*16 array, dimension (2*N).
Workspace.

RWORK


RWORK is DOUBLE PRECISION array, dimension (N).
Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.

Purpose:


ZLA_PORCOND_X Computes the infinity norm condition number of
op(A) * diag(X) where X is a COMPLEX*16 vector.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by ZPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

X


X is COMPLEX*16 array, dimension (N)
The vector X in the formula op(A) * diag(X).

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is COMPLEX*16 array, dimension (2*N).
Workspace.

RWORK


RWORK is DOUBLE PRECISION array, dimension (N).
Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Generated automatically by Doxygen for LAPACK from the source code.

Thu Aug 7 2025 17:26:25 Version 3.12.0