DOKK / manpages / debian 13 / liblapack-doc / langt.3.en
langt(3) LAPACK langt(3)

langt - langt: general matrix, tridiagonal


real function clangt (norm, n, dl, d, du)
CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. double precision function dlangt (norm, n, dl, d, du)
DLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. real function slangt (norm, n, dl, d, du)
SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. double precision function zlangt (norm, n, dl, d, du)
ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Purpose:


CLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex tridiagonal matrix A.

Returns

CLANGT


CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in CLANGT as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, CLANGT is
set to zero.

DL


DL is COMPLEX array, dimension (N-1)
The (n-1) sub-diagonal elements of A.

D


D is COMPLEX array, dimension (N)
The diagonal elements of A.

DU


DU is COMPLEX array, dimension (N-1)
The (n-1) super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

DLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Purpose:


DLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real tridiagonal matrix A.

Returns

DLANGT


DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in DLANGT as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANGT is
set to zero.

DL


DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal elements of A.

D


D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.

DU


DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Purpose:


SLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real tridiagonal matrix A.

Returns

SLANGT


SLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in SLANGT as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANGT is
set to zero.

DL


DL is REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of A.

D


D is REAL array, dimension (N)
The diagonal elements of A.

DU


DU is REAL array, dimension (N-1)
The (n-1) super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Purpose:


ZLANGT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex tridiagonal matrix A.

Returns

ZLANGT


ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in ZLANGT as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANGT is
set to zero.

DL


DL is COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal elements of A.

D


D is COMPLEX*16 array, dimension (N)
The diagonal elements of A.

DU


DU is COMPLEX*16 array, dimension (N-1)
The (n-1) super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Generated automatically by Doxygen for LAPACK from the source code.

Thu Aug 7 2025 17:26:25 Version 3.12.0