DOKK / manpages / debian 13 / liblapack-doc / ptsv.3.en
ptsv(3) LAPACK ptsv(3)

ptsv - ptsv: factor and solve


subroutine cptsv (n, nrhs, d, e, b, ldb, info)
CPTSV computes the solution to system of linear equations A * X = B for PT matrices subroutine dptsv (n, nrhs, d, e, b, ldb, info)
DPTSV computes the solution to system of linear equations A * X = B for PT matrices subroutine sptsv (n, nrhs, d, e, b, ldb, info)
SPTSV computes the solution to system of linear equations A * X = B for PT matrices subroutine zptsv (n, nrhs, d, e, b, ldb, info)
ZPTSV computes the solution to system of linear equations A * X = B for PT matrices

CPTSV computes the solution to system of linear equations A * X = B for PT matrices

Purpose:


CPTSV computes the solution to a complex system of linear equations
A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**H, and the factored form of A is then
used to solve the system of equations.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**H.

E


E is COMPLEX array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**H factorization of
A. E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**H*D*U factorization of A.

B


B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the solution has not been
computed. The factorization has not been completed
unless i = N.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

DPTSV computes the solution to system of linear equations A * X = B for PT matrices

Purpose:


DPTSV computes the solution to a real system of linear equations
A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**T, and the factored form of A is then
used to solve the system of equations.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**T.

E


E is DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**T factorization of
A. (E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**T*D*U factorization of A.)

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the solution has not been
computed. The factorization has not been completed
unless i = N.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

SPTSV computes the solution to system of linear equations A * X = B for PT matrices

Purpose:


SPTSV computes the solution to a real system of linear equations
A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**T, and the factored form of A is then
used to solve the system of equations.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**T.

E


E is REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**T factorization of
A. (E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**T*D*U factorization of A.)

B


B is REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the solution has not been
computed. The factorization has not been completed
unless i = N.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZPTSV computes the solution to system of linear equations A * X = B for PT matrices

Purpose:


ZPTSV computes the solution to a complex system of linear equations
A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal
matrix, and X and B are N-by-NRHS matrices.
A is factored as A = L*D*L**H, and the factored form of A is then
used to solve the system of equations.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix
D from the factorization A = L*D*L**H.

E


E is COMPLEX*16 array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L**H factorization of
A. E can also be regarded as the superdiagonal of the unit
bidiagonal factor U from the U**H*D*U factorization of A.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the solution has not been
computed. The factorization has not been completed
unless i = N.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Generated automatically by Doxygen for LAPACK from the source code.

Thu Aug 7 2025 17:26:25 Version 3.12.0