DOKK / manpages / debian 13 / liblapack-doc / tprfb.3.en
tprfb(3) LAPACK tprfb(3)

tprfb - tprfb: applies Q (like larfb)


subroutine ctprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
CTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks. subroutine dtprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks. subroutine stprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
STPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks. subroutine ztprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
ZTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks.

CTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks.

Purpose:


CTPRFB applies a complex 'triangular-pentagonal' block reflector H or its
conjugate transpose H**H to a complex matrix C, which is composed of two
blocks A and B, either from the left or right.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply H or H**H from the Left
= 'R': apply H or H**H from the Right

TRANS


TRANS is CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H**H (Conjugate transpose)

DIRECT


DIRECT is CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columns
= 'R': Rows

M


M is INTEGER
The number of rows of the matrix B.
M >= 0.

N


N is INTEGER
The number of columns of the matrix B.
N >= 0.

K


K is INTEGER
The order of the matrix T, i.e. the number of elementary
reflectors whose product defines the block reflector.
K >= 0.

L


L is INTEGER
The order of the trapezoidal part of V.
K >= L >= 0. See Further Details.

V


V is COMPLEX array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The pentagonal matrix V, which contains the elementary reflectors
H(1), H(2), ..., H(K). See Further Details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.

T


T is COMPLEX array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.

LDT


LDT is INTEGER
The leading dimension of the array T.
LDT >= K.

A


A is COMPLEX array, dimension
(LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
On entry, the K-by-N or M-by-K matrix A.
On exit, A is overwritten by the corresponding block of
H*C or H**H*C or C*H or C*H**H. See Further Details.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,K);
If SIDE = 'R', LDA >= max(1,M).

B


B is COMPLEX array, dimension (LDB,N)
On entry, the M-by-N matrix B.
On exit, B is overwritten by the corresponding block of
H*C or H**H*C or C*H or C*H**H. See Further Details.

LDB


LDB is INTEGER
The leading dimension of the array B.
LDB >= max(1,M).

WORK


WORK is COMPLEX array, dimension
(LDWORK,N) if SIDE = 'L',
(LDWORK,K) if SIDE = 'R'.

LDWORK


LDWORK is INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= K;
if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


The matrix C is a composite matrix formed from blocks A and B.
The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
and if SIDE = 'L', A is of size K-by-N.
If SIDE = 'R' and DIRECT = 'F', C = [A B].
If SIDE = 'L' and DIRECT = 'F', C = [A]
[B].
If SIDE = 'R' and DIRECT = 'B', C = [B A].
If SIDE = 'L' and DIRECT = 'B', C = [B]
[A].
The pentagonal matrix V is composed of a rectangular block V1 and a
trapezoidal block V2. The size of the trapezoidal block is determined by
the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular;
if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
If DIRECT = 'F' and STOREV = 'C': V = [V1]
[V2]
- V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
If DIRECT = 'F' and STOREV = 'R': V = [V1 V2]
- V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'C': V = [V2]
[V1]
- V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'R': V = [V2 V1]
- V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks.

Purpose:


DTPRFB applies a real 'triangular-pentagonal' block reflector H or its
transpose H**T to a real matrix C, which is composed of two
blocks A and B, either from the left or right.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply H or H**T from the Left
= 'R': apply H or H**T from the Right

TRANS


TRANS is CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H**T (Transpose)

DIRECT


DIRECT is CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columns
= 'R': Rows

M


M is INTEGER
The number of rows of the matrix B.
M >= 0.

N


N is INTEGER
The number of columns of the matrix B.
N >= 0.

K


K is INTEGER
The order of the matrix T, i.e. the number of elementary
reflectors whose product defines the block reflector.
K >= 0.

L


L is INTEGER
The order of the trapezoidal part of V.
K >= L >= 0. See Further Details.

V


V is DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The pentagonal matrix V, which contains the elementary reflectors
H(1), H(2), ..., H(K). See Further Details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.

T


T is DOUBLE PRECISION array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.

LDT


LDT is INTEGER
The leading dimension of the array T.
LDT >= K.

A


A is DOUBLE PRECISION array, dimension
(LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
On entry, the K-by-N or M-by-K matrix A.
On exit, A is overwritten by the corresponding block of
H*C or H**T*C or C*H or C*H**T. See Further Details.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,K);
If SIDE = 'R', LDA >= max(1,M).

B


B is DOUBLE PRECISION array, dimension (LDB,N)
On entry, the M-by-N matrix B.
On exit, B is overwritten by the corresponding block of
H*C or H**T*C or C*H or C*H**T. See Further Details.

LDB


LDB is INTEGER
The leading dimension of the array B.
LDB >= max(1,M).

WORK


WORK is DOUBLE PRECISION array, dimension
(LDWORK,N) if SIDE = 'L',
(LDWORK,K) if SIDE = 'R'.

LDWORK


LDWORK is INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= K;
if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


The matrix C is a composite matrix formed from blocks A and B.
The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
and if SIDE = 'L', A is of size K-by-N.
If SIDE = 'R' and DIRECT = 'F', C = [A B].
If SIDE = 'L' and DIRECT = 'F', C = [A]
[B].
If SIDE = 'R' and DIRECT = 'B', C = [B A].
If SIDE = 'L' and DIRECT = 'B', C = [B]
[A].
The pentagonal matrix V is composed of a rectangular block V1 and a
trapezoidal block V2. The size of the trapezoidal block is determined by
the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular;
if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
If DIRECT = 'F' and STOREV = 'C': V = [V1]
[V2]
- V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
If DIRECT = 'F' and STOREV = 'R': V = [V1 V2]
- V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'C': V = [V2]
[V1]
- V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'R': V = [V2 V1]
- V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

STPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks.

Purpose:


STPRFB applies a real 'triangular-pentagonal' block reflector H or its
transpose H**T to a real matrix C, which is composed of two
blocks A and B, either from the left or right.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply H or H**T from the Left
= 'R': apply H or H**T from the Right

TRANS


TRANS is CHARACTER*1
= 'N': apply H (No transpose)
= 'T': apply H**T (Transpose)

DIRECT


DIRECT is CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columns
= 'R': Rows

M


M is INTEGER
The number of rows of the matrix B.
M >= 0.

N


N is INTEGER
The number of columns of the matrix B.
N >= 0.

K


K is INTEGER
The order of the matrix T, i.e. the number of elementary
reflectors whose product defines the block reflector.
K >= 0.

L


L is INTEGER
The order of the trapezoidal part of V.
K >= L >= 0. See Further Details.

V


V is REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The pentagonal matrix V, which contains the elementary reflectors
H(1), H(2), ..., H(K). See Further Details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.

T


T is REAL array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.

LDT


LDT is INTEGER
The leading dimension of the array T.
LDT >= K.

A


A is REAL array, dimension
(LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
On entry, the K-by-N or M-by-K matrix A.
On exit, A is overwritten by the corresponding block of
H*C or H**T*C or C*H or C*H**T. See Further Details.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,K);
If SIDE = 'R', LDA >= max(1,M).

B


B is REAL array, dimension (LDB,N)
On entry, the M-by-N matrix B.
On exit, B is overwritten by the corresponding block of
H*C or H**T*C or C*H or C*H**T. See Further Details.

LDB


LDB is INTEGER
The leading dimension of the array B.
LDB >= max(1,M).

WORK


WORK is REAL array, dimension
(LDWORK,N) if SIDE = 'L',
(LDWORK,K) if SIDE = 'R'.

LDWORK


LDWORK is INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= K;
if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


The matrix C is a composite matrix formed from blocks A and B.
The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
and if SIDE = 'L', A is of size K-by-N.
If SIDE = 'R' and DIRECT = 'F', C = [A B].
If SIDE = 'L' and DIRECT = 'F', C = [A]
[B].
If SIDE = 'R' and DIRECT = 'B', C = [B A].
If SIDE = 'L' and DIRECT = 'B', C = [B]
[A].
The pentagonal matrix V is composed of a rectangular block V1 and a
trapezoidal block V2. The size of the trapezoidal block is determined by
the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular;
if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
If DIRECT = 'F' and STOREV = 'C': V = [V1]
[V2]
- V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
If DIRECT = 'F' and STOREV = 'R': V = [V1 V2]
- V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'C': V = [V2]
[V1]
- V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'R': V = [V2 V1]
- V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

ZTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks.

Purpose:


ZTPRFB applies a complex 'triangular-pentagonal' block reflector H or its
conjugate transpose H**H to a complex matrix C, which is composed of two
blocks A and B, either from the left or right.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply H or H**H from the Left
= 'R': apply H or H**H from the Right

TRANS


TRANS is CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H**H (Conjugate transpose)

DIRECT


DIRECT is CHARACTER*1
Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columns
= 'R': Rows

M


M is INTEGER
The number of rows of the matrix B.
M >= 0.

N


N is INTEGER
The number of columns of the matrix B.
N >= 0.

K


K is INTEGER
The order of the matrix T, i.e. the number of elementary
reflectors whose product defines the block reflector.
K >= 0.

L


L is INTEGER
The order of the trapezoidal part of V.
K >= L >= 0. See Further Details.

V


V is COMPLEX*16 array, dimension
(LDV,K) if STOREV = 'C'
(LDV,M) if STOREV = 'R' and SIDE = 'L'
(LDV,N) if STOREV = 'R' and SIDE = 'R'
The pentagonal matrix V, which contains the elementary reflectors
H(1), H(2), ..., H(K). See Further Details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
if STOREV = 'R', LDV >= K.

T


T is COMPLEX*16 array, dimension (LDT,K)
The triangular K-by-K matrix T in the representation of the
block reflector.

LDT


LDT is INTEGER
The leading dimension of the array T.
LDT >= K.

A


A is COMPLEX*16 array, dimension
(LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
On entry, the K-by-N or M-by-K matrix A.
On exit, A is overwritten by the corresponding block of
H*C or H**H*C or C*H or C*H**H. See Further Details.

LDA


LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,K);
If SIDE = 'R', LDA >= max(1,M).

B


B is COMPLEX*16 array, dimension (LDB,N)
On entry, the M-by-N matrix B.
On exit, B is overwritten by the corresponding block of
H*C or H**H*C or C*H or C*H**H. See Further Details.

LDB


LDB is INTEGER
The leading dimension of the array B.
LDB >= max(1,M).

WORK


WORK is COMPLEX*16 array, dimension
(LDWORK,N) if SIDE = 'L',
(LDWORK,K) if SIDE = 'R'.

LDWORK


LDWORK is INTEGER
The leading dimension of the array WORK.
If SIDE = 'L', LDWORK >= K;
if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


The matrix C is a composite matrix formed from blocks A and B.
The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
and if SIDE = 'L', A is of size K-by-N.
If SIDE = 'R' and DIRECT = 'F', C = [A B].
If SIDE = 'L' and DIRECT = 'F', C = [A]
[B].
If SIDE = 'R' and DIRECT = 'B', C = [B A].
If SIDE = 'L' and DIRECT = 'B', C = [B]
[A].
The pentagonal matrix V is composed of a rectangular block V1 and a
trapezoidal block V2. The size of the trapezoidal block is determined by
the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular;
if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
If DIRECT = 'F' and STOREV = 'C': V = [V1]
[V2]
- V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
If DIRECT = 'F' and STOREV = 'R': V = [V1 V2]
- V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'C': V = [V2]
[V1]
- V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
If DIRECT = 'B' and STOREV = 'R': V = [V2 V1]
- V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Generated automatically by Doxygen for LAPACK from the source code.

Thu Aug 7 2025 17:26:25 Version 3.12.0