DOKK / manpages / debian 13 / liblapack-doc / tptri.3.en
tptri(3) LAPACK tptri(3)

tptri - tptri: triangular inverse


subroutine ctptri (uplo, diag, n, ap, info)
CTPTRI subroutine dtptri (uplo, diag, n, ap, info)
DTPTRI subroutine stptri (uplo, diag, n, ap, info)
STPTRI subroutine ztptri (uplo, diag, n, ap, info)
ZTPTRI

CTPTRI

Purpose:


CTPTRI computes the inverse of a complex upper or lower triangular
matrix A stored in packed format.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

AP


AP is COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE

DTPTRI

Purpose:


DTPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

AP


AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE

STPTRI

Purpose:


STPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

AP


AP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE

ZTPTRI

Purpose:


ZTPTRI computes the inverse of a complex upper or lower triangular
matrix A stored in packed format.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE

Generated automatically by Doxygen for LAPACK from the source code.

Thu Aug 7 2025 17:26:25 Version 3.12.0