DOKK / manpages / debian 13 / liblapack-doc / trtri.3.en
trtri(3) LAPACK trtri(3)

trtri - trtri: triangular inverse


subroutine ctrtri (uplo, diag, n, a, lda, info)
CTRTRI subroutine dtrtri (uplo, diag, n, a, lda, info)
DTRTRI subroutine strtri (uplo, diag, n, a, lda, info)
STRTRI subroutine ztrtri (uplo, diag, n, a, lda, info)
ZTRTRI

CTRTRI

Purpose:


CTRTRI computes the inverse of a complex upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

DTRTRI

Purpose:


DTRTRI computes the inverse of a real upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

STRTRI

Purpose:


STRTRI computes the inverse of a real upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

ZTRTRI

Purpose:


ZTRTRI computes the inverse of a complex upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Generated automatically by Doxygen for LAPACK from the source code.

Thu Aug 7 2025 17:26:25 Version 3.12.0