statsmodels.discrete.count_model.ZeroInflatedNegativeBinomialResults¶
- class statsmodels.discrete.count_model.ZeroInflatedNegativeBinomialResults(model, mlefit, cov_type='nonrobust', cov_kwds=None, use_t=None)[source]¶
A results class for Zero Inflated Generalized Negative Binomial
- Parameters:¶
- model
ADiscreteModelinstance - paramsarray_like
The parameters of a fitted model.
- hessianarray_like
The hessian of the fitted model.
- scale
float A scale parameter for the covariance matrix.
- model
- Attributes:¶
Methods
conf_int([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params([r_matrix, column, scale, cov_p, ...])Compute the variance/covariance matrix.
f_test(r_matrix[, cov_p, invcov])Compute the F-test for a joint linear hypothesis.
get_diagnostic([y_max])Get instance of class with specification and diagnostic methods.
get_distribution([exog, transform])Influence and outlier measures
get_margeff([at, method, atexog, dummy, count])Get marginal effects of the fitted model.
get_prediction([exog, exog_infl, exposure, ...])Compute prediction results when endpoint transformation is valid.
info_criteria(crit[, dk_params])Return an information criterion for the model.
initialize(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load(fname)Load a pickled results instance
See specific model class docstring
predict([exog, transform])Call self.model.predict with self.params as the first argument.
Remove data arrays, all nobs arrays from result and model.
save(fname[, remove_data])Save a pickle of this instance.
score_test([exog_extra, params_constrained, ...])score test for restrictions or for omitted variables
set_null_options([llnull, attach_results])Set the fit options for the Null (constant-only) model.
summary([yname, xname, title, alpha, yname_list])Summarize the Regression Results.
summary2([yname, xname, title, alpha, ...])Experimental function to summarize regression results.
t_test(r_matrix[, cov_p, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q.
t_test_pairwise(term_name[, method, alpha, ...])Perform pairwise t_test with multiple testing corrected p-values.
wald_test(r_matrix[, cov_p, invcov, use_f, ...])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns.
Properties
Akaike information criterion.
Bayesian information criterion.
The standard errors of the parameter estimates.
Linear predictor XB.
Log-likelihood of model
Value of the constant-only loglikelihood
Likelihood ratio chi-squared statistic; -2*(llnull - llf)
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr.
McFadden's pseudo-R-squared.
The two-tailed p values for the t-stats of the params.
Residuals
Pearson residuals defined as response residuals divided by standard deviation implied by the model.
Respnose residuals.
Return the t-statistic for a given parameter estimate.
Flag indicating to use the Student's distribution in inference.