statsmodels.discrete.discrete_model.MultinomialModel¶
- class statsmodels.discrete.discrete_model.MultinomialModel(endog, exog, offset=None, check_rank=True, **kwargs)[source]¶
- Attributes:¶
endog_namesNames of endogenous variables.
exog_namesNames of exogenous variables.
Methods
cdf(X)The cumulative distribution function of the model.
cov_params_func_l1(likelihood_model, xopt, ...)Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit.
fit([start_params, method, maxiter, ...])Fit the model using maximum likelihood.
fit_constrained(constraints[, start_params])fit_constraint that returns a results instance
fit_regularized([start_params, method, ...])Fit the model using a regularized maximum likelihood.
from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe.
get_distribution(params[, exog, offset])get frozen instance of distribution
hessian(params)The Hessian matrix of the model.
information(params)Fisher information matrix of model.
Preprocesses the data for MNLogit.
loglike(params)Log-likelihood of model.
pdf(X)The probability density (mass) function of the model.
predict(params[, exog, which, linear])Predict response variable of a model given exogenous variables.
score(params)Score vector of model.
Properties
Names of endogenous variables.
Names of exogenous variables.