Skip to content
logo
statsmodels 0.14.2
statsmodels.tools.eval_measures.bic
Initializing search
    statsmodels
    statsmodels
    • Installing statsmodels
    • Getting started
    • User Guide
      • Background
      • Regression and Linear Models
      • Time Series Analysis
      • Other Models
      • Statistics and Tools
        • Statistics stats
        • Contingency tables
        • Multiple Imputation with Chained Equations
        • Treatment Effects treatment
        • Empirical Likelihood emplike
        • Distributions
        • Graphics
        • Input-Output iolib
        • Tools
          • Module Reference
            • Basic tools tools
            • Numerical Differentiation
            • Measure for fit performance eval_measures
              • statsmodels.tools.eval_measures.aic
              • statsmodels.tools.eval_measures.aic_sigma
              • statsmodels.tools.eval_measures.aicc
              • statsmodels.tools.eval_measures.aicc_sigma
              • statsmodels.tools.eval_measures.bic
                • Fstatsmodels.tools.eval_measures.bic
                  • Parameters
                  • Returns
              • statsmodels.tools.eval_measures.bic_sigma
              • statsmodels.tools.eval_measures.hqic
              • statsmodels.tools.eval_measures.hqic_sigma
              • statsmodels.tools.eval_measures.bias
              • statsmodels.tools.eval_measures.iqr
              • statsmodels.tools.eval_measures.maxabs
              • statsmodels.tools.eval_measures.meanabs
              • statsmodels.tools.eval_measures.medianabs
              • statsmodels.tools.eval_measures.medianbias
              • statsmodels.tools.eval_measures.mse
              • statsmodels.tools.eval_measures.rmse
              • statsmodels.tools.eval_measures.rmspe
              • statsmodels.tools.eval_measures.stde
              • statsmodels.tools.eval_measures.vare
        • Working with Large Data Sets
        • Optimization
      • Data Sets
      • Sandbox
    • Examples
    • API Reference
    • About statsmodels
    • Developer Page
    • Release Notes
    • Fstatsmodels.tools.eval_measures.bic
      • Parameters
      • Returns

    statsmodels.tools.eval_measures.bic¶

    statsmodels.tools.eval_measures.bic(llf, nobs, df_modelwc)[source]¶

    Bayesian information criterion (BIC) or Schwarz criterion

    Parameters:¶
    llf{float, array_like}

    value of the loglikelihood

    nobsint

    number of observations

    df_modelwcint

    number of parameters including constant

    Returns:¶
    bicfloat

    information criterion

    References

    https://en.wikipedia.org/wiki/Bayesian_information_criterion


    Last update: Jun 10, 2024
    Previous statsmodels.tools.eval_measures.aicc_sigma
    Next statsmodels.tools.eval_measures.bic_sigma
    © Copyright 2009-2023, Josef Perktold, Skipper Seabold, Jonathan Taylor, statsmodels-developers.
    Created using Sphinx 7.3.7. and Sphinx-Immaterial