statsmodels.tools.eval_measures.vare¶
- statsmodels.tools.eval_measures.vare(x1, x2, ddof=0, axis=0)[source]¶
variance of error
- Parameters:¶
- x1, x2array_like
The performance measure depends on the difference between these two arrays.
- axis
int axis along which the summary statistic is calculated
- Returns:¶
Notes
If
x1andx2have different shapes, then they need to broadcast. This usesnumpy.asanyarrayto convert the input. Whether this is the desired result or not depends on the array subclass.
Last update:
Jun 10, 2024