Source code for sympy.physics.mechanics.body

from sympy.core.backend import Symbol
from sympy.physics.mechanics import (RigidBody, Particle, ReferenceFrame,
                                     inertia)
from sympy.physics.vector import Point, Vector

__all__ = ['Body']


[docs]class Body(RigidBody, Particle): """ Body is a common representation of either a RigidBody or a Particle SymPy object depending on what is passed in during initialization. If a mass is passed in and central_inertia is left as None, the Particle object is created. Otherwise a RigidBody object will be created. The attributes that Body possesses will be the same as a Particle instance or a Rigid Body instance depending on which was created. Additional attributes are listed below. Attributes ========== name : string The body's name masscenter : Point The point which represents the center of mass of the rigid body frame : ReferenceFrame The reference frame which the body is fixed in mass : Sympifyable The body's mass inertia : (Dyadic, Point) The body's inertia around its center of mass. This attribute is specific to the rigid body form of Body and is left undefined for the Particle form loads : iterable This list contains information on the different loads acting on the Body. Forces are listed as a (point, vector) tuple and torques are listed as (reference frame, vector) tuples. Parameters ========== name : String Defines the name of the body. It is used as the base for defining body specific properties. masscenter : Point, optional A point that represents the center of mass of the body or particle. If no point is given, a point is generated. mass : Sympifyable, optional A Sympifyable object which represents the mass of the body. If no mass is passed, one is generated. frame : ReferenceFrame, optional The ReferenceFrame that represents the reference frame of the body. If no frame is given, a frame is generated. central_inertia : Dyadic, optional Central inertia dyadic of the body. If none is passed while creating RigidBody, a default inertia is generated. Examples ======== Default behaviour. This results in the creation of a RigidBody object for which the mass, mass center, frame and inertia attributes are given default values. :: >>> from sympy.physics.mechanics import Body >>> body = Body('name_of_body') This next example demonstrates the code required to specify all of the values of the Body object. Note this will also create a RigidBody version of the Body object. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia >>> from sympy.physics.mechanics import Body >>> mass = Symbol('mass') >>> masscenter = Point('masscenter') >>> frame = ReferenceFrame('frame') >>> ixx = Symbol('ixx') >>> body_inertia = inertia(frame, ixx, 0, 0) >>> body = Body('name_of_body', masscenter, mass, frame, body_inertia) The minimal code required to create a Particle version of the Body object involves simply passing in a name and a mass. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> mass = Symbol('mass') >>> body = Body('name_of_body', mass=mass) The Particle version of the Body object can also receive a masscenter point and a reference frame, just not an inertia. """ def __init__(self, name, masscenter=None, mass=None, frame=None, central_inertia=None): self.name = name self.loads = [] if frame is None: frame = ReferenceFrame(name + '_frame') if masscenter is None: masscenter = Point(name + '_masscenter') if central_inertia is None and mass is None: ixx = Symbol(name + '_ixx') iyy = Symbol(name + '_iyy') izz = Symbol(name + '_izz') izx = Symbol(name + '_izx') ixy = Symbol(name + '_ixy') iyz = Symbol(name + '_iyz') _inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx), masscenter) else: _inertia = (central_inertia, masscenter) if mass is None: _mass = Symbol(name + '_mass') else: _mass = mass masscenter.set_vel(frame, 0) # If user passes masscenter and mass then a particle is created # otherwise a rigidbody. As a result a body may or may not have inertia. if central_inertia is None and mass is not None: self.frame = frame self.masscenter = masscenter Particle.__init__(self, name, masscenter, _mass) else: RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia)
[docs] def apply_force(self, vec, point=None): """ Adds a force to a point (center of mass by default) on the body. Parameters ========== vec: Vector Defines the force vector. Can be any vector w.r.t any frame or combinations of frames. point: Point, optional Defines the point on which the force is applied. Default is the Body's center of mass. Example ======= The first example applies a gravitational force in the x direction of Body's frame to the body's center of mass. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> body = Body('body') >>> g = Symbol('g') >>> body.apply_force(body.mass * g * body.frame.x) To apply force to any other point than center of mass, pass that point as well. This example applies a gravitational force to a point a distance l from the body's center of mass in the y direction. The force is again applied in the x direction. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> body = Body('body') >>> g = Symbol('g') >>> l = Symbol('l') >>> point = body.masscenter.locatenew('force_point', l * ... body.frame.y) >>> body.apply_force(body.mass * g * body.frame.x, point) """ if not isinstance(point, Point): if point is None: point = self.masscenter # masscenter else: raise TypeError("A Point must be supplied to apply force to.") if not isinstance(vec, Vector): raise TypeError("A Vector must be supplied to apply force.") self.loads.append((point, vec))
[docs] def apply_torque(self, vec): """ Adds a torque to the body. Parameters ========== vec: Vector Defines the torque vector. Can be any vector w.r.t any frame or combinations of frame. Example ======= This example adds a simple torque around the body's z axis. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> body = Body('body') >>> T = Symbol('T') >>> body.apply_torque(T * body.frame.z) """ if not isinstance(vec, Vector): raise TypeError("A Vector must be supplied to add torque.") self.loads.append((self.frame, vec))