Source code for sympy.vector.functions

from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.scalar import BaseScalar
from sympy.vector.vector import Vector, BaseVector
from sympy.vector.operators import gradient, curl, divergence
from sympy import diff, integrate, S, simplify
from sympy.core import sympify
from sympy.vector.dyadic import Dyadic


[docs]def express(expr, system, system2=None, variables=False): """ Global function for 'express' functionality. Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given coordinate system. If 'variables' is True, then the coordinate variables (base scalars) of other coordinate systems present in the vector/scalar field or dyadic are also substituted in terms of the base scalars of the given system. Parameters ========== expr : Vector/Dyadic/scalar(sympyfiable) The expression to re-express in CoordSys3D 'system' system: CoordSys3D The coordinate system the expr is to be expressed in system2: CoordSys3D The other coordinate system required for re-expression (only for a Dyadic Expr) variables : boolean Specifies whether to substitute the coordinate variables present in expr, in terms of those of parameter system Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy import Symbol, cos, sin >>> N = CoordSys3D('N') >>> q = Symbol('q') >>> B = N.orient_new_axis('B', q, N.k) >>> from sympy.vector import express >>> express(B.i, N) (cos(q))*N.i + (sin(q))*N.j >>> express(N.x, B, variables=True) -sin(q)*B.y + cos(q)*B.x >>> d = N.i.outer(N.i) >>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i) True """ if expr == 0 or expr == Vector.zero: return expr if not isinstance(system, CoordSys3D): raise TypeError("system should be a CoordSys3D \ instance") if isinstance(expr, Vector): if system2 is not None: raise ValueError("system2 should not be provided for \ Vectors") # Given expr is a Vector if variables: # If variables attribute is True, substitute # the coordinate variables in the Vector system_list = [] for x in expr.atoms(BaseScalar, BaseVector): if x.system != system: system_list.append(x.system) system_list = set(system_list) subs_dict = {} for f in system_list: subs_dict.update(f.scalar_map(system)) expr = expr.subs(subs_dict) # Re-express in this coordinate system outvec = Vector.zero parts = expr.separate() for x in parts: if x != system: temp = system.rotation_matrix(x) * parts[x].to_matrix(x) outvec += matrix_to_vector(temp, system) else: outvec += parts[x] return outvec elif isinstance(expr, Dyadic): if system2 is None: system2 = system if not isinstance(system2, CoordSys3D): raise TypeError("system2 should be a CoordSys3D \ instance") outdyad = Dyadic.zero var = variables for k, v in expr.components.items(): outdyad += (express(v, system, variables=var) * (express(k.args[0], system, variables=var) | express(k.args[1], system2, variables=var))) return outdyad else: if system2 is not None: raise ValueError("system2 should not be provided for \ Vectors") if variables: # Given expr is a scalar field system_set = set([]) expr = sympify(expr) # Subsitute all the coordinate variables for x in expr.atoms(BaseScalar): if x.system != system: system_set.add(x.system) subs_dict = {} for f in system_set: subs_dict.update(f.scalar_map(system)) return expr.subs(subs_dict) return expr
def directional_derivative(scalar, vect): """ Returns the directional derivative of a scalar field computed along a given vector in given coordinate system. Parameters ========== scalar : SymPy Expr The scalar field to compute the gradient of vect : Vector The vector operand coord_sys : CoordSys3D The coordinate system to calculate the gradient in Examples ======== >>> from sympy.vector import CoordSys3D, directional_derivative >>> R = CoordSys3D('R') >>> f1 = R.x*R.y*R.z >>> v1 = 3*R.i + 4*R.j + R.k >>> directional_derivative(f1, v1) R.x*R.y + 4*R.x*R.z + 3*R.y*R.z >>> f2 = 5*R.x**2*R.z >>> directional_derivative(f2, v1) 5*R.x**2 + 30*R.x*R.z """ return gradient(scalar).dot(vect).doit()
[docs]def is_conservative(field): """ Checks if a field is conservative. Paramaters ========== field : Vector The field to check for conservative property Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector import is_conservative >>> R = CoordSys3D('R') >>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k) True >>> is_conservative(R.z*R.j) False """ # Field is conservative irrespective of system # Take the first coordinate system in the result of the # separate method of Vector if not isinstance(field, Vector): raise TypeError("field should be a Vector") if field == Vector.zero: return True return curl(field).simplify() == Vector.zero
[docs]def is_solenoidal(field): """ Checks if a field is solenoidal. Paramaters ========== field : Vector The field to check for solenoidal property Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector import is_solenoidal >>> R = CoordSys3D('R') >>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k) True >>> is_solenoidal(R.y * R.j) False """ # Field is solenoidal irrespective of system # Take the first coordinate system in the result of the # separate method in Vector if not isinstance(field, Vector): raise TypeError("field should be a Vector") if field == Vector.zero: return True return divergence(field).simplify() == S(0)
[docs]def scalar_potential(field, coord_sys): """ Returns the scalar potential function of a field in a given coordinate system (without the added integration constant). Parameters ========== field : Vector The vector field whose scalar potential function is to be calculated coord_sys : CoordSys3D The coordinate system to do the calculation in Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector import scalar_potential, gradient >>> R = CoordSys3D('R') >>> scalar_potential(R.k, R) == R.z True >>> scalar_field = 2*R.x**2*R.y*R.z >>> grad_field = gradient(scalar_field) >>> scalar_potential(grad_field, R) 2*R.x**2*R.y*R.z """ # Check whether field is conservative if not is_conservative(field): raise ValueError("Field is not conservative") if field == Vector.zero: return S(0) # Express the field exntirely in coord_sys # Subsitute coordinate variables also if not isinstance(coord_sys, CoordSys3D): raise TypeError("coord_sys must be a CoordSys3D") field = express(field, coord_sys, variables=True) dimensions = coord_sys.base_vectors() scalars = coord_sys.base_scalars() # Calculate scalar potential function temp_function = integrate(field.dot(dimensions[0]), scalars[0]) for i, dim in enumerate(dimensions[1:]): partial_diff = diff(temp_function, scalars[i + 1]) partial_diff = field.dot(dim) - partial_diff temp_function += integrate(partial_diff, scalars[i + 1]) return temp_function
[docs]def scalar_potential_difference(field, coord_sys, point1, point2): """ Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field. If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used. Returns (potential at point2) - (potential at point1) The position vectors of the two Points are calculated wrt the origin of the coordinate system provided. Parameters ========== field : Vector/Expr The field to calculate wrt coord_sys : CoordSys3D The coordinate system to do the calculations in point1 : Point The initial Point in given coordinate system position2 : Point The second Point in the given coordinate system Examples ======== >>> from sympy.vector import CoordSys3D, Point >>> from sympy.vector import scalar_potential_difference >>> R = CoordSys3D('R') >>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k) >>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j >>> scalar_potential_difference(vectfield, R, R.origin, P) 2*R.x**2*R.y >>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k) >>> scalar_potential_difference(vectfield, R, P, Q) -2*R.x**2*R.y + 18 """ if not isinstance(coord_sys, CoordSys3D): raise TypeError("coord_sys must be a CoordSys3D") if isinstance(field, Vector): # Get the scalar potential function scalar_fn = scalar_potential(field, coord_sys) else: # Field is a scalar scalar_fn = field # Express positions in required coordinate system origin = coord_sys.origin position1 = express(point1.position_wrt(origin), coord_sys, variables=True) position2 = express(point2.position_wrt(origin), coord_sys, variables=True) # Get the two positions as substitution dicts for coordinate variables subs_dict1 = {} subs_dict2 = {} scalars = coord_sys.base_scalars() for i, x in enumerate(coord_sys.base_vectors()): subs_dict1[scalars[i]] = x.dot(position1) subs_dict2[scalars[i]] = x.dot(position2) return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
[docs]def matrix_to_vector(matrix, system): """ Converts a vector in matrix form to a Vector instance. It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis vectors of 'system'. Parameters ========== matrix : SymPy Matrix, Dimensions: (3, 1) The matrix to be converted to a vector system : CoordSys3D The coordinate system the vector is to be defined in Examples ======== >>> from sympy import ImmutableMatrix as Matrix >>> m = Matrix([1, 2, 3]) >>> from sympy.vector import CoordSys3D, matrix_to_vector >>> C = CoordSys3D('C') >>> v = matrix_to_vector(m, C) >>> v C.i + 2*C.j + 3*C.k >>> v.to_matrix(C) == m True """ outvec = Vector.zero vects = system.base_vectors() for i, x in enumerate(matrix): outvec += x * vects[i] return outvec
def _path(from_object, to_object): """ Calculates the 'path' of objects starting from 'from_object' to 'to_object', along with the index of the first common ancestor in the tree. Returns (index, list) tuple. """ if from_object._root != to_object._root: raise ValueError("No connecting path found between " + str(from_object) + " and " + str(to_object)) other_path = [] obj = to_object while obj._parent is not None: other_path.append(obj) obj = obj._parent other_path.append(obj) object_set = set(other_path) from_path = [] obj = from_object while obj not in object_set: from_path.append(obj) obj = obj._parent index = len(from_path) i = other_path.index(obj) while i >= 0: from_path.append(other_path[i]) i -= 1 return index, from_path def orthogonalize(*vlist, **kwargs): """ Takes a sequence of independent vectors and orthogonalizes them using the Gram - Schmidt process. Returns a list of orthogonal or orthonormal vectors. Parameters ========== vlist : sequence of independent vectors to be made orthogonal. orthonormal : Optional parameter Set to True if the the vectors returned should be orthonormal. Default: False Examples ======== >>> from sympy.vector.coordsysrect import CoordSys3D >>> from sympy.vector.vector import Vector, BaseVector >>> from sympy.vector.functions import orthogonalize >>> C = CoordSys3D('C') >>> i, j, k = C.base_vectors() >>> v1 = i + 2*j >>> v2 = 2*i + 3*j >>> orthogonalize(v1, v2) [C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j] References ========== .. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process """ orthonormal = kwargs.get('orthonormal', False) if not all(isinstance(vec, Vector) for vec in vlist): raise TypeError('Each element must be of Type Vector') ortho_vlist = [] for i, term in enumerate(vlist): for j in range(i): term -= ortho_vlist[j].projection(vlist[i]) # TODO : The following line introduces a performance issue # and needs to be changed once a good solution for issue #10279 is # found. if simplify(term).equals(Vector.zero): raise ValueError("Vector set not linearly independent") ortho_vlist.append(term) if orthonormal: ortho_vlist = [vec.normalize() for vec in ortho_vlist] return ortho_vlist