Anticommutator¶
The anti-commutator: {A,B} = A*B + B*A.
- 
class sympy.physics.quantum.anticommutator.AntiCommutator(A, B)[source]¶
- The standard anticommutator, in an unevaluated state. - Evaluating an anticommutator is defined [R579] as: - {A, B} = A*B + B*A. This class returns the anticommutator in an unevaluated form. To evaluate the anticommutator, use the- .doit()method.- Canonical ordering of an anticommutator is - {A, B}for- A < B. The arguments of the anticommutator are put into canonical order using- __cmp__. If- B < A, then- {A, B}is returned as- {B, A}.- Parameters
- A : Expr - The first argument of the anticommutator {A,B}. - B : Expr - The second argument of the anticommutator {A,B}. 
 - Examples - >>> from sympy import symbols >>> from sympy.physics.quantum import AntiCommutator >>> from sympy.physics.quantum import Operator, Dagger >>> x, y = symbols('x,y') >>> A = Operator('A') >>> B = Operator('B') - Create an anticommutator and use - doit()to multiply them out.- >>> ac = AntiCommutator(A,B); ac {A,B} >>> ac.doit() A*B + B*A - The commutator orders it arguments in canonical order: - >>> ac = AntiCommutator(B,A); ac {A,B} - Commutative constants are factored out: - >>> AntiCommutator(3*x*A,x*y*B) 3*x**2*y*{A,B} - Adjoint operations applied to the anticommutator are properly applied to the arguments: - >>> Dagger(AntiCommutator(A,B)) {Dagger(A),Dagger(B)} - References 
