Clebsch-Gordan Coefficients¶
Clebsch-Gordon Coefficients.
- 
class sympy.physics.quantum.cg.CG(j1, m1, j2, m2, j3, m3)[source]¶
- Class for Clebsch-Gordan coefficient - Clebsch-Gordan coefficients describe the angular momentum coupling between two systems. The coefficients give the expansion of a coupled total angular momentum state and an uncoupled tensor product state. The Clebsch-Gordan coefficients are defined as [R580]: \[C^{j_1,m_1}_{j_2,m_2,j_3,m_3} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle\]- Parameters
- j1, m1, j2, m2, j3, m3 : Number, Symbol - Terms determining the angular momentum of coupled angular momentum systems. 
 - Examples - Define a Clebsch-Gordan coefficient and evaluate its value - >>> from sympy.physics.quantum.cg import CG >>> from sympy import S >>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1) >>> cg CG(3/2, 3/2, 1/2, -1/2, 1, 1) >>> cg.doit() sqrt(3)/2 - See also - Wigner3j
- Wigner-3j symbols 
 - References 
- 
class sympy.physics.quantum.cg.Wigner3j(j1, m1, j2, m2, j3, m3)[source]¶
- Class for the Wigner-3j symbols - Wigner 3j-symbols are coefficients determined by the coupling of two angular momenta. When created, they are expressed as symbolic quantities that, for numerical parameters, can be evaluated using the - .doit()method [R581].- Parameters
- j1, m1, j2, m2, j3, m3 : Number, Symbol - Terms determining the angular momentum of coupled angular momentum systems. 
 - Examples - Declare a Wigner-3j coefficient and calculate its value - >>> from sympy.physics.quantum.cg import Wigner3j >>> w3j = Wigner3j(6,0,4,0,2,0) >>> w3j Wigner3j(6, 0, 4, 0, 2, 0) >>> w3j.doit() sqrt(715)/143 - See also - CG
- Clebsch-Gordan coefficients 
 - References 
- 
class sympy.physics.quantum.cg.Wigner6j(j1, j2, j12, j3, j, j23)[source]¶
- Class for the Wigner-6j symbols - See also - Wigner3j
- Wigner-3j symbols 
 
- 
class sympy.physics.quantum.cg.Wigner9j(j1, j2, j12, j3, j4, j34, j13, j24, j)[source]¶
- Class for the Wigner-9j symbols - See also - Wigner3j
- Wigner-3j symbols 
 
- 
sympy.physics.quantum.cg.cg_simp(e)[source]¶
- Simplify and combine CG coefficients - This function uses various symmetry and properties of sums and products of Clebsch-Gordan coefficients to simplify statements involving these terms [R582]. - Examples - Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to 2*a+1 - >>> from sympy.physics.quantum.cg import CG, cg_simp >>> a = CG(1,1,0,0,1,1) >>> b = CG(1,0,0,0,1,0) >>> c = CG(1,-1,0,0,1,-1) >>> cg_simp(a+b+c) 3 - See also - CG
- Clebsh-Gordan coefficients 
 - References 
