Predicates#
Common#
Tautological#
- class sympy.assumptions.predicates.common.IsTruePredicate(*args, **kwargs)[source]#
Generic predicate.
Explanation
ask(Q.is_true(x))
is true iffx
is true. This only makes sense ifx
is a boolean object.Examples
>>> from sympy import ask, Q >>> from sympy.abc import x, y >>> ask(Q.is_true(True)) True
Wrapping another applied predicate just returns the applied predicate.
>>> Q.is_true(Q.even(x)) Q.even(x)
Wrapping binary relation classes in SymPy core returns applied binary relational predicates.
>>> from sympy import Eq, Gt >>> Q.is_true(Eq(x, y)) Q.eq(x, y) >>> Q.is_true(Gt(x, y)) Q.gt(x, y)
Notes
This class is designed to wrap the boolean objects so that they can behave as if they are applied predicates. Consequently, wrapping another applied predicate is unnecessary and thus it just returns the argument. Also, binary relation classes in SymPy core have binary predicates to represent themselves and thus wrapping them with
Q.is_true
converts them to these applied predicates.Handler
Multiply dispatched method: IsTrueHandler
Wrapper allowing to query the truth value of a boolean expression.
- handler = <dispatched IsTrueHandler>#
Commutative#
- class sympy.assumptions.predicates.common.CommutativePredicate(*args, **kwargs)[source]#
Commutative predicate.
Explanation
ask(Q.commutative(x))
is true iffx
commutes with any other object with respect to multiplication operation.Handler
Multiply dispatched method: CommutativeHandler
Handler for key ‘commutative’.
- handler = <dispatched CommutativeHandler>#
Calculus#
Finite#
- class sympy.assumptions.predicates.calculus.FinitePredicate(*args, **kwargs)[source]#
Finite number predicate.
Explanation
Q.finite(x)
is true ifx
is a number but neither an infinity nor aNaN
. In other words,ask(Q.finite(x))
is true for all numericalx
having a bounded absolute value.Examples
>>> from sympy import Q, ask, S, oo, I, zoo >>> from sympy.abc import x >>> ask(Q.finite(oo)) False >>> ask(Q.finite(-oo)) False >>> ask(Q.finite(zoo)) False >>> ask(Q.finite(1)) True >>> ask(Q.finite(2 + 3*I)) True >>> ask(Q.finite(x), Q.positive(x)) True >>> print(ask(Q.finite(S.NaN))) None
Handler
Multiply dispatched method: FiniteHandler
Handler for Q.finite. Test that an expression is bounded respect to all its variables.
References
- handler = <dispatched FiniteHandler>#
Infinite#
Matrix#
Symmetric#
- class sympy.assumptions.predicates.matrices.SymmetricPredicate(*args, **kwargs)[source]#
Symmetric matrix predicate.
Explanation
Q.symmetric(x)
is true iffx
is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix.Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False
Handler
Multiply dispatched method: SymmetricHandler
Handler for Q.symmetric.
References
- handler = <dispatched SymmetricHandler>#
Invertible#
- class sympy.assumptions.predicates.matrices.InvertiblePredicate(*args, **kwargs)[source]#
Invertible matrix predicate.
Explanation
Q.invertible(x)
is true iffx
is an invertible matrix. A square matrix is called invertible only if its determinant is 0.Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True
Handler
Multiply dispatched method: InvertibleHandler
Handler for Q.invertible.
References
- handler = <dispatched InvertibleHandler>#
Orthogonal#
- class sympy.assumptions.predicates.matrices.OrthogonalPredicate(*args, **kwargs)[source]#
Orthogonal matrix predicate.
Explanation
Q.orthogonal(x)
is true iffx
is an orthogonal matrix. A square matrixM
is an orthogonal matrix if it satisfiesM^TM = MM^T = I
whereM^T
is the transpose matrix ofM
andI
is an identity matrix. Note that an orthogonal matrix is necessarily invertible.Examples
>>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True
Handler
Multiply dispatched method: OrthogonalHandler
Handler for key ‘orthogonal’.
References
- handler = <dispatched OrthogonalHandler>#
Unitary#
- class sympy.assumptions.predicates.matrices.UnitaryPredicate(*args, **kwargs)[source]#
Unitary matrix predicate.
Explanation
Q.unitary(x)
is true iffx
is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrixM
with complex elements is unitary if :math:M^TM = MM^T= I
where :math:M^T
is the conjugate transpose matrix ofM
.Examples
>>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True
Handler
Multiply dispatched method: UnitaryHandler
Handler for key ‘unitary’.
References
- handler = <dispatched UnitaryHandler>#
Positive Definite#
- class sympy.assumptions.predicates.matrices.PositiveDefinitePredicate(*args, **kwargs)[source]#
Positive definite matrix predicate.
Explanation
If \(M\) is a \(n \times n\) symmetric real matrix, it is said to be positive definite if \(Z^TMZ\) is positive for every non-zero column vector \(Z\) of \(n\) real numbers.
Examples
>>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True
Handler
Multiply dispatched method: PositiveDefiniteHandler
Handler for key ‘positive_definite’.
References
- handler = <dispatched PositiveDefiniteHandler>#
Upper triangular#
- class sympy.assumptions.predicates.matrices.UpperTriangularPredicate(*args, **kwargs)[source]#
Upper triangular matrix predicate.
Explanation
A matrix \(M\) is called upper triangular matrix if \(M_{ij}=0\) for \(i<j\).
Examples
>>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True
Handler
Multiply dispatched method: UpperTriangularHandler
Handler for key ‘upper_triangular’.
References
- handler = <dispatched UpperTriangularHandler>#
Lower triangular#
- class sympy.assumptions.predicates.matrices.LowerTriangularPredicate(*args, **kwargs)[source]#
Lower triangular matrix predicate.
Explanation
A matrix \(M\) is called lower triangular matrix if \(M_{ij}=0\) for \(i>j\).
Examples
>>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True
Handler
Multiply dispatched method: LowerTriangularHandler
Handler for key ‘lower_triangular’.
References
- handler = <dispatched LowerTriangularHandler>#
Diagonal#
- class sympy.assumptions.predicates.matrices.DiagonalPredicate(*args, **kwargs)[source]#
Diagonal matrix predicate.
Explanation
Q.diagonal(x)
is true iffx
is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero.Examples
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True
Handler
Multiply dispatched method: DiagonalHandler
Handler for key ‘diagonal’.
References
- handler = <dispatched DiagonalHandler>#
Full rank#
- class sympy.assumptions.predicates.matrices.FullRankPredicate(*args, **kwargs)[source]#
Fullrank matrix predicate.
Explanation
Q.fullrank(x)
is true iffx
is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero.Examples
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True
Handler
Multiply dispatched method: FullRankHandler
Handler for key ‘fullrank’.
- handler = <dispatched FullRankHandler>#
Square#
- class sympy.assumptions.predicates.matrices.SquarePredicate(*args, **kwargs)[source]#
Square matrix predicate.
Explanation
Q.square(x)
is true iffx
is a square matrix. A square matrix is a matrix with the same number of rows and columns.Examples
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True
Handler
Multiply dispatched method: SquareHandler
Handler for Q.square.
References
- handler = <dispatched SquareHandler>#
Integer elements#
- class sympy.assumptions.predicates.matrices.IntegerElementsPredicate(*args, **kwargs)[source]#
Integer elements matrix predicate.
Explanation
Q.integer_elements(x)
is true iff all the elements ofx
are integers.Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True
Handler
Multiply dispatched method: IntegerElementsHandler
Handler for key ‘integer_elements’.
- handler = <dispatched IntegerElementsHandler>#
Real elements#
- class sympy.assumptions.predicates.matrices.RealElementsPredicate(*args, **kwargs)[source]#
Real elements matrix predicate.
Explanation
Q.real_elements(x)
is true iff all the elements ofx
are real numbers.Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True
Handler
Multiply dispatched method: RealElementsHandler
Handler for key ‘real_elements’.
- handler = <dispatched RealElementsHandler>#
Complex elements#
- class sympy.assumptions.predicates.matrices.ComplexElementsPredicate(*args, **kwargs)[source]#
Complex elements matrix predicate.
Explanation
Q.complex_elements(x)
is true iff all the elements ofx
are complex numbers.Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True
Handler
Multiply dispatched method: ComplexElementsHandler
Handler for key ‘complex_elements’.
- handler = <dispatched ComplexElementsHandler>#
Singular#
- class sympy.assumptions.predicates.matrices.SingularPredicate(*args, **kwargs)[source]#
Singular matrix predicate.
A matrix is singular iff the value of its determinant is 0.
Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True
Handler
Multiply dispatched method: SingularHandler
Predicate fore key ‘singular’.
References
- handler = <dispatched SingularHandler>#
Normal#
- class sympy.assumptions.predicates.matrices.NormalPredicate(*args, **kwargs)[source]#
Normal matrix predicate.
A matrix is normal if it commutes with its conjugate transpose.
Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True
Handler
Multiply dispatched method: NormalHandler
Predicate fore key ‘normal’.
References
- handler = <dispatched NormalHandler>#
Triangular#
- class sympy.assumptions.predicates.matrices.TriangularPredicate(*args, **kwargs)[source]#
Triangular matrix predicate.
Explanation
Q.triangular(X)
is true ifX
is one that is either lower triangular or upper triangular.Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True
Handler
Multiply dispatched method: TriangularHandler
Predicate fore key ‘triangular’.
References
- handler = <dispatched TriangularHandler>#
Unit triangular#
- class sympy.assumptions.predicates.matrices.UnitTriangularPredicate(*args, **kwargs)[source]#
Unit triangular matrix predicate.
Explanation
A unit triangular matrix is a triangular matrix with 1s on the diagonal.
Examples
>>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True
Handler
Multiply dispatched method: UnitTriangularHandler
Predicate fore key ‘unit_triangular’.
- handler = <dispatched UnitTriangularHandler>#
Number Theory#
Even#
- class sympy.assumptions.predicates.ntheory.EvenPredicate(*args, **kwargs)[source]#
Even number predicate.
Explanation
ask(Q.even(x))
is true iffx
belongs to the set of even integers.Examples
>>> from sympy import Q, ask, pi >>> ask(Q.even(0)) True >>> ask(Q.even(2)) True >>> ask(Q.even(3)) False >>> ask(Q.even(pi)) False
Handler
Multiply dispatched method: EvenHandler
Handler for key ‘even’.
- handler = <dispatched EvenHandler>#
Odd#
- class sympy.assumptions.predicates.ntheory.OddPredicate(*args, **kwargs)[source]#
Odd number predicate.
Explanation
ask(Q.odd(x))
is true iffx
belongs to the set of odd numbers.Examples
>>> from sympy import Q, ask, pi >>> ask(Q.odd(0)) False >>> ask(Q.odd(2)) False >>> ask(Q.odd(3)) True >>> ask(Q.odd(pi)) False
Handler
Multiply dispatched method: OddHandler
Handler for key ‘odd’. Test that an expression represents an odd number.
- handler = <dispatched OddHandler>#
Prime#
- class sympy.assumptions.predicates.ntheory.PrimePredicate(*args, **kwargs)[source]#
Prime number predicate.
Explanation
ask(Q.prime(x))
is true iffx
is a natural number greater than 1 that has no positive divisors other than1
and the number itself.Examples
>>> from sympy import Q, ask >>> ask(Q.prime(0)) False >>> ask(Q.prime(1)) False >>> ask(Q.prime(2)) True >>> ask(Q.prime(20)) False >>> ask(Q.prime(-3)) False
Handler
Multiply dispatched method: PrimeHandler
Handler for key ‘prime’. Test that an expression represents a prime number. When the expression is an exact number, the result (when True) is subject to the limitations of isprime() which is used to return the result.
- handler = <dispatched PrimeHandler>#
Composite#
- class sympy.assumptions.predicates.ntheory.CompositePredicate(*args, **kwargs)[source]#
Composite number predicate.
Explanation
ask(Q.composite(x))
is true iffx
is a positive integer and has at least one positive divisor other than1
and the number itself.Examples
>>> from sympy import Q, ask >>> ask(Q.composite(0)) False >>> ask(Q.composite(1)) False >>> ask(Q.composite(2)) False >>> ask(Q.composite(20)) True
Handler
Multiply dispatched method: CompositeHandler
Handler for key ‘composite’.
- handler = <dispatched CompositeHandler>#
Order#
Positive#
- class sympy.assumptions.predicates.order.PositivePredicate(*args, **kwargs)[source]#
Positive real number predicate.
Explanation
Q.positive(x)
is true iffx
is real and \(x > 0\), that is ifx
is in the interval \((0, \infty)\). In particular, infinity is not positive.A few important facts about positive numbers:
- Note that
Q.nonpositive
and~Q.positive
are not the same thing.
~Q.positive(x)
simply means thatx
is not positive, whereasQ.nonpositive(x)
means thatx
is real and not positive, i.e.,Q.nonpositive(x)
is logically equivalent to \(Q.negative(x) | Q.zero(x)`\). So for example,~Q.positive(I)
is true, whereasQ.nonpositive(I)
is false.
- Note that
- See the documentation of
Q.real
for more information about related facts.
- See the documentation of
Examples
>>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x)) True >>> ask(Q.positive(1)) True >>> ask(Q.nonpositive(I)) False >>> ask(~Q.positive(I)) True
Handler
Multiply dispatched method: PositiveHandler
Handler for key ‘positive’. Test that an expression is strictly greater than zero.
- handler = <dispatched PositiveHandler>#
Negative#
- class sympy.assumptions.predicates.order.NegativePredicate(*args, **kwargs)[source]#
Negative number predicate.
Explanation
Q.negative(x)
is true iffx
is a real number and \(x < 0\), that is, it is in the interval \((-\infty, 0)\). Note in particular that negative infinity is not negative.A few important facts about negative numbers:
- Note that
Q.nonnegative
and~Q.negative
are not the same thing.
~Q.negative(x)
simply means thatx
is not negative, whereasQ.nonnegative(x)
means thatx
is real and not negative, i.e.,Q.nonnegative(x)
is logically equivalent toQ.zero(x) | Q.positive(x)
. So for example,~Q.negative(I)
is true, whereasQ.nonnegative(I)
is false.
- Note that
- See the documentation of
Q.real
for more information about related facts.
- See the documentation of
Examples
>>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x)) True >>> ask(Q.negative(-1)) True >>> ask(Q.nonnegative(I)) False >>> ask(~Q.negative(I)) True
Handler
Multiply dispatched method: NegativeHandler
Handler for Q.negative. Test that an expression is strictly less than zero.
- handler = <dispatched NegativeHandler>#
Zero#
- class sympy.assumptions.predicates.order.ZeroPredicate(*args, **kwargs)[source]#
Zero number predicate.
Explanation
ask(Q.zero(x))
is true iff the value ofx
is zero.Examples
>>> from sympy import ask, Q, oo, symbols >>> x, y = symbols('x, y') >>> ask(Q.zero(0)) True >>> ask(Q.zero(1/oo)) True >>> print(ask(Q.zero(0*oo))) None >>> ask(Q.zero(1)) False >>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) True
Handler
Multiply dispatched method: ZeroHandler
Handler for key ‘zero’.
- handler = <dispatched ZeroHandler>#
Nonzero#
- class sympy.assumptions.predicates.order.NonZeroPredicate(*args, **kwargs)[source]#
Nonzero real number predicate.
Explanation
ask(Q.nonzero(x))
is true iffx
is real andx
is not zero. Note in particular thatQ.nonzero(x)
is false ifx
is not real. Use~Q.zero(x)
if you want the negation of being zero without any real assumptions.A few important facts about nonzero numbers:
Q.nonzero
is logically equivalent toQ.positive | Q.negative
.- See the documentation of
Q.real
for more information about related facts.
- See the documentation of
Examples
>>> from sympy import Q, ask, symbols, I, oo >>> x = symbols('x') >>> print(ask(Q.nonzero(x), ~Q.zero(x))) None >>> ask(Q.nonzero(x), Q.positive(x)) True >>> ask(Q.nonzero(x), Q.zero(x)) False >>> ask(Q.nonzero(0)) False >>> ask(Q.nonzero(I)) False >>> ask(~Q.zero(I)) True >>> ask(Q.nonzero(oo)) False
Handler
Multiply dispatched method: NonZeroHandler
Handler for key ‘zero’. Test that an expression is not identically zero.
- handler = <dispatched NonZeroHandler>#
Nonpositive#
- class sympy.assumptions.predicates.order.NonPositivePredicate(*args, **kwargs)[source]#
Nonpositive real number predicate.
Explanation
ask(Q.nonpositive(x))
is true iffx
belongs to the set of negative numbers including zero.- Note that
Q.nonpositive
and~Q.positive
are not the same thing.
~Q.positive(x)
simply means thatx
is not positive, whereasQ.nonpositive(x)
means thatx
is real and not positive, i.e.,Q.nonpositive(x)
is logically equivalent to \(Q.negative(x) | Q.zero(x)`\). So for example,~Q.positive(I)
is true, whereasQ.nonpositive(I)
is false.
- Note that
Examples
>>> from sympy import Q, ask, I
>>> ask(Q.nonpositive(-1)) True >>> ask(Q.nonpositive(0)) True >>> ask(Q.nonpositive(1)) False >>> ask(Q.nonpositive(I)) False >>> ask(Q.nonpositive(-I)) False
Handler
Multiply dispatched method: NonPositiveHandler
Handler for key ‘nonpositive’.
- handler = <dispatched NonPositiveHandler>#
Nonnegative#
- class sympy.assumptions.predicates.order.NonNegativePredicate(*args, **kwargs)[source]#
Nonnegative real number predicate.
Explanation
ask(Q.nonnegative(x))
is true iffx
belongs to the set of positive numbers including zero.- Note that
Q.nonnegative
and~Q.negative
are not the same thing.
~Q.negative(x)
simply means thatx
is not negative, whereasQ.nonnegative(x)
means thatx
is real and not negative, i.e.,Q.nonnegative(x)
is logically equivalent toQ.zero(x) | Q.positive(x)
. So for example,~Q.negative(I)
is true, whereasQ.nonnegative(I)
is false.
- Note that
Examples
>>> from sympy import Q, ask, I >>> ask(Q.nonnegative(1)) True >>> ask(Q.nonnegative(0)) True >>> ask(Q.nonnegative(-1)) False >>> ask(Q.nonnegative(I)) False >>> ask(Q.nonnegative(-I)) False
Handler
Multiply dispatched method: NonNegativeHandler
Handler for Q.nonnegative.
- handler = <dispatched NonNegativeHandler>#
Sets#
Integer#
- class sympy.assumptions.predicates.sets.IntegerPredicate(*args, **kwargs)[source]#
Integer predicate.
Explanation
Q.integer(x)
is true iffx
belongs to the set of integer numbers.Examples
>>> from sympy import Q, ask, S >>> ask(Q.integer(5)) True >>> ask(Q.integer(S(1)/2)) False
Handler
Multiply dispatched method: IntegerHandler
Handler for Q.integer.
Test that an expression belongs to the field of integer numbers.
References
- handler = <dispatched IntegerHandler>#
Rational#
- class sympy.assumptions.predicates.sets.RationalPredicate(*args, **kwargs)[source]#
Rational number predicate.
Explanation
Q.rational(x)
is true iffx
belongs to the set of rational numbers.Examples
>>> from sympy import ask, Q, pi, S >>> ask(Q.rational(0)) True >>> ask(Q.rational(S(1)/2)) True >>> ask(Q.rational(pi)) False
Handler
Multiply dispatched method: RationalHandler
Handler for Q.rational.
Test that an expression belongs to the field of rational numbers.
References
- handler = <dispatched RationalHandler>#
Irrational#
- class sympy.assumptions.predicates.sets.IrrationalPredicate(*args, **kwargs)[source]#
Irrational number predicate.
Explanation
Q.irrational(x)
is true iffx
is any real number that cannot be expressed as a ratio of integers.Examples
>>> from sympy import ask, Q, pi, S, I >>> ask(Q.irrational(0)) False >>> ask(Q.irrational(S(1)/2)) False >>> ask(Q.irrational(pi)) True >>> ask(Q.irrational(I)) False
Handler
Multiply dispatched method: IrrationalHandler
Handler for Q.irrational.
Test that an expression is irrational numbers.
References
- handler = <dispatched IrrationalHandler>#
Real#
- class sympy.assumptions.predicates.sets.RealPredicate(*args, **kwargs)[source]#
Real number predicate.
Explanation
Q.real(x)
is true iffx
is a real number, i.e., it is in the interval \((-\infty, \infty)\). Note that, in particular the infinities are not real. UseQ.extended_real
if you want to consider those as well.A few important facts about reals:
- Every real number is positive, negative, or zero. Furthermore,
because these sets are pairwise disjoint, each real number is exactly one of those three.
Every real number is also complex.
Every real number is finite.
Every real number is either rational or irrational.
Every real number is either algebraic or transcendental.
- The facts
Q.negative
,Q.zero
,Q.positive
, Q.nonnegative
,Q.nonpositive
,Q.nonzero
,Q.integer
,Q.rational
, andQ.irrational
all implyQ.real
, as do all facts that imply those facts.
- The facts
- The facts
Q.algebraic
, andQ.transcendental
do not imply Q.real
; they implyQ.complex
. An algebraic or transcendental number may or may not be real.
- The facts
- The “non” facts (i.e.,
Q.nonnegative
,Q.nonzero
, Q.nonpositive
andQ.noninteger
) are not equivalent to not the fact, but rather, not the fact andQ.real
. For example,Q.nonnegative
means~Q.negative & Q.real
. So for example,I
is not nonnegative, nonzero, or nonpositive.
- The “non” facts (i.e.,
Examples
>>> from sympy import Q, ask, symbols >>> x = symbols('x') >>> ask(Q.real(x), Q.positive(x)) True >>> ask(Q.real(0)) True
Handler
Multiply dispatched method: RealHandler
Handler for Q.real.
Test that an expression belongs to the field of real numbers.
References
- handler = <dispatched RealHandler>#
Extended real#
- class sympy.assumptions.predicates.sets.ExtendedRealPredicate(*args, **kwargs)[source]#
Extended real predicate.
Explanation
Q.extended_real(x)
is true iffx
is a real number or \(\{-\infty, \infty\}\).See documentation of
Q.real
for more information about related facts.Examples
>>> from sympy import ask, Q, oo, I >>> ask(Q.extended_real(1)) True >>> ask(Q.extended_real(I)) False >>> ask(Q.extended_real(oo)) True
Handler
Multiply dispatched method: ExtendedRealHandler
Handler for Q.extended_real.
Test that an expression belongs to the field of extended real
numbers, that is real numbers union {Infinity, -Infinity}.
- handler = <dispatched ExtendedRealHandler>#
Hermitian#
- class sympy.assumptions.predicates.sets.HermitianPredicate(*args, **kwargs)[source]#
Hermitian predicate.
Explanation
ask(Q.hermitian(x))
is true iffx
belongs to the set of Hermitian operators.Handler
Multiply dispatched method: HermitianHandler
Handler for Q.hermitian.
Test that an expression belongs to the field of Hermitian operators.
References
- handler = <dispatched HermitianHandler>#
Complex#
- class sympy.assumptions.predicates.sets.ComplexPredicate(*args, **kwargs)[source]#
Complex number predicate.
Explanation
Q.complex(x)
is true iffx
belongs to the set of complex numbers. Note that every complex number is finite.Examples
>>> from sympy import Q, Symbol, ask, I, oo >>> x = Symbol('x') >>> ask(Q.complex(0)) True >>> ask(Q.complex(2 + 3*I)) True >>> ask(Q.complex(oo)) False
Handler
Multiply dispatched method: ComplexHandler
Handler for Q.complex.
Test that an expression belongs to the field of complex numbers.
References
- handler = <dispatched ComplexHandler>#
Imaginary#
- class sympy.assumptions.predicates.sets.ImaginaryPredicate(*args, **kwargs)[source]#
Imaginary number predicate.
Explanation
Q.imaginary(x)
is true iffx
can be written as a real number multiplied by the imaginary unitI
. Please note that0
is not considered to be an imaginary number.Examples
>>> from sympy import Q, ask, I >>> ask(Q.imaginary(3*I)) True >>> ask(Q.imaginary(2 + 3*I)) False >>> ask(Q.imaginary(0)) False
Handler
Multiply dispatched method: ImaginaryHandler
Handler for Q.imaginary.
Test that an expression belongs to the field of imaginary numbers,
that is, numbers in the form x*I, where x is real.
References
- handler = <dispatched ImaginaryHandler>#
Antihermitian#
- class sympy.assumptions.predicates.sets.AntihermitianPredicate(*args, **kwargs)[source]#
Antihermitian predicate.
Explanation
Q.antihermitian(x)
is true iffx
belongs to the field of antihermitian operators, i.e., operators in the formx*I
, wherex
is Hermitian.Handler
Multiply dispatched method: AntiHermitianHandler
Handler for Q.antihermitian.
Test that an expression belongs to the field of anti-Hermitian
operators, that is, operators in the form x*I, where x is Hermitian.
References
- handler = <dispatched AntiHermitianHandler>#
Algebraic#
- class sympy.assumptions.predicates.sets.AlgebraicPredicate(*args, **kwargs)[source]#
Algebraic number predicate.
Explanation
Q.algebraic(x)
is true iffx
belongs to the set of algebraic numbers.x
is algebraic if there is some polynomial inp(x)\in \mathbb\{Q\}[x]
such thatp(x) = 0
.Examples
>>> from sympy import ask, Q, sqrt, I, pi >>> ask(Q.algebraic(sqrt(2))) True >>> ask(Q.algebraic(I)) True >>> ask(Q.algebraic(pi)) False
Handler
Multiply dispatched method: AskAlgebraicpredicateHandler
Handler for key AskAlgebraicpredicateHandler
References
- AlgebraicHandler = <dispatched AlgebraicHandler>#
- handler = <dispatched AskAlgebraicpredicateHandler>#
Transcendental#
- class sympy.assumptions.predicates.sets.TranscendentalPredicate(*args, **kwargs)[source]#
Transcedental number predicate.
Explanation
Q.transcendental(x)
is true iffx
belongs to the set of transcendental numbers. A transcendental number is a real or complex number that is not algebraic.Handler
Multiply dispatched method: Transcendental
Handler for Q.transcendental key.
- handler = <dispatched Transcendental>#