statsmodels.discrete.discrete_model.Poisson.score¶
- Poisson.score(params)[source]¶
 Poisson model score (gradient) vector of the log-likelihood
- Parameters:¶
 - paramsarray_like
 The parameters of the model
- Returns:¶
 - score
ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at params
- score
 
Notes
\[\frac{\partial\ln L}{\partial\beta}=\sum_{i=1}^{n}\left(y_{i}-\lambda_{i}\right)x_{i}\]where the loglinear model is assumed
\[\ln\lambda_{i}=x_{i}\beta\]
  
    
      Last update:
      Jun 10, 2024