statsmodels.discrete.discrete_model.Poisson.score_obs¶
- Poisson.score_obs(params)[source]¶
 Poisson model Jacobian of the log-likelihood for each observation
- Parameters:¶
 - paramsarray_like
 The parameters of the model
- Returns:¶
 - scorearray_like
 The score vector (nobs, k_vars) of the model evaluated at params
Notes
\[\frac{\partial\ln L_{i}}{\partial\beta}=\left(y_{i}-\lambda_{i}\right)x_{i}\]for observations \(i=1,...,n\)
where the loglinear model is assumed
\[\ln\lambda_{i}=x_{i}\beta\]
  
    
      Last update:
      Jun 10, 2024